Supporting information for

Electronic, mechanical and gas sensing properties of two-dimensional γ-SnSe

Chunyan Zhu,^{1,#} Tianhang Feng,^{1,#} Xinying Jiang,¹ Gang Li,^{2,*} Jun-Hui Yuan,³ Chao Liu,^{1,*} Pan Zhang,⁴ and Jiafu Wang³

¹Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China

²College of Railway Rolling Stock, Wuhan Railway Vocational College of Technology, Wuhan 430205, China

³School of Science, Wuhan University of Technology, Wuhan 430070, China

⁴National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing 100871, China

AUTHOR INFORMATION

*Corresponding Author

E-mail: lig_csu@foxmail.com (G. Li); chaoliu@scuec.edu.cn (C. Liu)

[#]Chunyan Zhu and Tianhang Feng contributed equally to this work.

Model	a (Å)	b (Å)	c (Å) (includes vacuum layer thickness)
Monolayer	3.906	6.207	22.417
Bilayer	3.998	6.202	26.594
Trilayer	4.041	6.195	30.771
Four-layer	4.068	6.190	34.948
Five-layer	4.085	6.187	39.125

Table S1. The optimized structural parameters of monolayer and multilayer γ -SnSe.

Table S2. The corresponding bond angles of optimized monolayer and multilayer γ -SnSe.

Model	laver	<i>θ</i> 1 (°)	<i>θ</i> ₂ (°)	<i>θ</i> ₃ (°)	<i>θ</i> 4 (°)	<i>θ</i> 5 (°)
Manalana	1	01.247	00.002	01.014	01.247	01.014
Monolayer	1	91.347	98.003	91.014	91.347	91.014
Bilayer	2-1	91.605	100.487	92.824	90.004	92.969
	2-2	91.605	100.487	92.824	90.004	92.969
Tri-layer	3-1	91.852	100.530	93.554	89.751	93.789
	3-2	90.513	102.638	93.330	90.513	93.330
	3-3	89.751	102.556	93.789	91.852	93.554
Four-layer	4-1	91.913	100.600	94.077	89.601	94.344
	4-2	90.194	103.265	93.601	90.590	93.502
	4-3	90.194	103.265	93.601	90.590	93.502
	4-4	91.913	100.600	94.077	89.601	94.344
Five-layer	5-1	91.944	100.594	94.420	89.587	94.715
	5-2	89.976	103.508	93.822	90.667	93.729
	5-3	90.202	103.510	93.499	90.202	93.499
	5-4	90.667	102.850	93.729	89.976	93.822
	5-5	89.587	102.859	94.715	91.944	94.420

Model	layer	<i>l</i> 1 (Å)	<i>l</i> ₂ (Å)	<i>l</i> 3 (Å)	<i>l</i> 4 (Å)	d (Å)
Monolayer	1	2.738	2.890	2.738	2.890	/
Bilayer	2-1	2.756	2.814	2.760	2.857	/
	2-2	2.756	2.814	2.760	2.857	2.159
Trilayer	3-1	2.767	2.799	2.773	2.851	/
	3-2	2.778	2.811	2.778	2.811	2.058
	3-3	2.773	2.851	2.767	2.799	2.058
Four-layer	4-1	2.773	2.791	2.779	2.849	/
	4-2	2.792	2.806	2.790	2.799	2.017
	4-3	2.792	2.806	2.790	2.799	1.943
	4-4	2.773	2.791	2.779	2.849	2.017
Five-layer	5-1	2.777	2.790	2.783	2.847	/
	5-2	2.799	2.808	2.797	2.794	1.996
	5-3	2.804	2.797	2.804	2.797	1.897
	5-4	2.797	2.794	2.799	2.808	1.897
	5-5	2.783	2.847	2.777	2.790	1.996

Table S3. The corresponding bond lengths and the interlayer distances of optimized monolayer and multilayer γ -SnSe.

Table S4. The independent elastic constants C_{11} , C_{22} , C_{12} , C_{66} of monolayer and multilayer γ -SnSe.

Model	<i>C</i> 11	<i>C</i> ₂₂	<i>C</i> ₁₂	C 66
Monolayer	24.329	25.729	-0.598	6.161
Bilayer	39.512	47.117	3.201	15.736
Tri-layer	53.831	72.170	5.678	25.036
Four-layer	69.040	100.287	9.003	34.791
Five-layer	88.137	129.780	11.182	45.371

Model	Ymax	Ymin	Vmax	Vmin
Monolayer	25.715	16.377	0.329	-0.025
Bilayer	46.858	36.986	0.190	0.068
Tri-layer	71.571	53.384	0.148	0.079
Four-layer	99.113	68.232	0.137	0.090
Five-layer	128.361	87.173	0.129	0.086

Table S5. The maximum and minimum Young's modulus (N m⁻¹) and Poisson's ratios of monolayer and multilayer γ -SnSe.

Figure S1. Electronic band structure of (a) six-layer, (b) nine-layer and (c) ten-layer γ -SnSe based on PBE+SOC calculation.

Figure S2. The most stable configurations of gas molecules (CO, CO₂, H₂S, NH₃, NO, NO₂, and SO₂) adsorbed on the ML γ -SnSe.