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S1. Detailed structural parameters for eight considered boron structures

The atomic structures for eight considered boron allotropes in the main text are plotted

in Fig. S1, where the black line in each panel denotes the primitive cell. The detailed

structural parameters of these boron allotropes are listed in Table. I. One can observe that

there are 12, 105, 2, 6, 10, 12, 1, and 2 atoms in the primitive cells of α bulk boron, β

bulk boron, δ6 buckled borophene, bulk boron kagome lattice, (5, 0) boron nanotube, (6, 0)

boron nanotube, δ6 flat borophene, and δ3 borophene, respectively.

( e )                                                                      ( f )                                                             ( g )                                           ( h )

( a )                                                 ( b )                                                     ( c )                                                                    ( d )

FIG. S1. Atomic structures for eight considered boron allotropes: (a) α bulk boron, (b)

β bulk boron, (c) δ6 buckled borophene, (d) bulk boron kagome lattice, (e) (5, 0) boron

nanotube, (f) (6, 0) boron nanotube, (g) δ6 flat borophene, and (f) δ3 borophene.
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TABLE I: Structural parameters for α bulk boron, β bulk boron, δ6 buckled borophene, bulk

boron kagome lattice, (5, 0) boron nanotube, (6, 0) boron nanotube, δ6 flat borophene, and δ3

borophene.

a b c α β γ Atomic positions

(Å) (Å) (Å) (◦) (◦) (◦)

α bulk 5.05 5.05 5.05 58.03 58.03 58.03 B1 (0.15406, 0.51032, 0.51032)

B2 (0.51032, 0.15406, 0.51032)

B3 (0.51032, 0.51032, 0.15406)

B4 (0.48968, 0.48968, 0.84594)

B5 (0.84594, 0.48968, 0.48968)

B6 (0.48968, 0.84594, 0.48968)

B7 (0.13048, 0.72111, 0.72111)

B8 (0.72111, 0.13048, 0.72111)

B9 (0.72111, 0.72111, 0.13048)

B10 (0.27889, 0.27889, 0.86952)

B11 (0.86952, 0.27889, 0.27889)

B12 (0.27889, 0.86952, 0.27889)

β bulk 10.12 10.12 10.12 65.30 65.30 65.30 B1 (0.00281, 0.16347, 0.00281)

B2 (0.00281, 0.00281, 0.16347)

B3 (0.16347, 0.00281, 0.00281)

B4 (0.83653, 0.99719, 0.99719)

B5 (0.99719, 0.83653, 0.99719)

B6 (0.99719, 0.99719, 0.83653)

B7 (0.09970, 0.84118, 0.09970)

B8 (0.09970, 0.09970, 0.84118)

B9 (0.84118, 0.09970, 0.09970)

B10 (0.15882, 0.90030, 0.90030)

B11 (0.90030, 0.15882, 0.90030)

B12 (0.90030, 0.90030, 0.15882)

B13 (0.99546, 0.66405, 0.99546)
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a b c α β γ Atomic positions

(Å) (Å) (Å) (◦) (◦) (◦)

B14 (0.99546, 0.99546, 0.66405)

B15 (0.66405, 0.99546, 0.99546)

B16 (0.33595, 0.00454, 0.00454)

B17 (0.00454, 0.33595, 0.00454)

B18 (0.00454, 0.00454, 0.33595)

B19 (0.10409, 0.49032, 0.10409)

B20 (0.10409, 0.10409, 0.49032)

B21 (0.49032, 0.10409, 0.10409)

B22 (0.50968, 0.89591, 0.89591)

B23 (0.89591, 0.50968, 0.89591)

B24 (0.89591, 0.89591, 0.50968)

B25 (0.34899, 0.00386, 0.17461)

B26 (0.17461, 0.34899, 0.00386)

B27 (0.00386, 0.17461, 0.34899)

B28 (0.99614, 0.65101, 0.82539)

B29 (0.82539, 0.99614, 0.65101)

B30 (0.65101, 0.82539, 0.99614)

B31 (0.65101, 0.99614, 0.82539)

B32 (0.82539, 0.65101, 0.99614)

B33 (0.99614, 0.82539, 0.65101)

B34 (0.00386, 0.34899, 0.17461)

B35 (0.17461, 0.00386, 0.34899)

B36 (0.34899, 0.17461, 0.00386)

B37 (0.55093, 0.89514, 0.16593)

B38 (0.16593, 0.55093, 0.89514)

B39 (0.89514, 0.16593, 0.55093)

B40 (0.10487, 0.44908, 0.83407)

B41 (0.83407, 0.10487, 0.44908)
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a b c α β γ Atomic positions

(Å) (Å) (Å) (◦) (◦) (◦)

B42 (0.44908, 0.83407, 0.10487)

B43 (0.44908, 0.10487, 0.83407)

B44 (0.83407, 0.44908, 0.10487)

B45 (0.10487, 0.83407, 0.44908)

B46 (0.89514, 0.55093, 0.16593)

B47 (0.16593, 0.89514, 0.55093)

B48 (0.55093, 0.16593, 0.89514)

B49 (0.19896, 0.68660, 0.19896)

B50 (0.19896, 0.19896, 0.68660)

B51 (0.68660, 0.19896, 0.19896)

B52 (0.31340, 0.80104, 0.80104)

B53 (0.80104, 0.31340, 0.80104)

B54 (0.80104, 0.80104, 0.3134)

B55 (0.68402, 0.20023, 0.37561)

B56 (0.37561, 0.68402, 0.20023)

B57 (0.20023, 0.37561, 0.68402)

B58 (0.79977, 0.31598, 0.62439)

B59 (0.62439, 0.79977, 0.31598)

B60 (0.31598, 0.62439, 0.79977)

B61 (0.31598, 0.79977, 0.62439)

B62 (0.62439, 0.31598, 0.79977)

B63 (0.79977, 0.62439, 0.31598)

B64 (0.20023, 0.68402, 0.37561)

B65 (0.37561, 0.20023, 0.68402)

B66 (0.68402, 0.37561, 0.20023)

B67 (0.58021, 0.09603, 0.36361)

B68 (0.36361, 0.58021, 0.09603)

B69 (0.09603, 0.36361, 0.58021)
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a b c α β γ Atomic positions

(Å) (Å) (Å) (◦) (◦) (◦)

B70 (0.90397, 0.41979, 0.63639)

B71 (0.63639, 0.90397, 0.41979)

B72 (0.41979, 0.63639, 0.90397)

B73 (0.41979, 0.90397, 0.63639)

B74 (0.63639, 0.41979, 0.90397)

B75 (0.90397, 0.63639, 0.41979)

B76 (0.09603, 0.58021, 0.36361)

B77 (0.36361, 0.09603, 0.58021)

B78 (0.58021, 0.36361, 0.09603)

B79 (0.19920, 0.50587, 0.19920)

B80 (0.19920, 0.19920, 0.50587)

B81 (0.50587, 0.19920, 0.19920)

B82 (0.49413, 0.80080, 0.80080)

B83 (0.80080, 0.49413, 0.80080)

B84 (0.80080, 0.80080, 0.49413)

B85 (0.38445, 0.56820, 0.38445)

B86 (0.38445, 0.38445, 0.56820)

B87 (0.56820, 0.38445, 0.38445)

B88 (0.43180, 0.61555, 0.61555)

B89 (0.61555, 0.43180, 0.61555)

B90 (0.61555, 0.61555, 0.43180)

B91 (0.48929, 0.22118, 0.48929)

B92 (0.48929, 0.48929, 0.22118)

B93 (0.22118, 0.48929, 0.48929)

B94 (0.77882, 0.51072, 0.51072)

B95 (0.51072, 0.77882, 0.51072)

B96 (0.51072, 0.51072, 0.77882)

B97 (0.38150, 0.21358, 0.38150)
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a b c α β γ Atomic positions

(Å) (Å) (Å) (◦) (◦) (◦)

B98 (0.38150, 0.38150, 0.21358)

B99 (0.21358, 0.38150, 0.38150)

B100 (0.78642, 0.61850, 0.61850)

B101 (0.61850, 0.78642, 0.61850)

B102 (0.61850, 0.61850, 0.78642)

B103 (0.38481, 0.38481, 0.38481)

B104 (0.61519, 0.61519, 0.61519)

B105 (0.50000, 0.50000, 0.50000)

δ6 buckled sheet 2.87 1.62 14.87 90.00 90.00 90.00 B1 (0.00000, 0.00000, 0.52987)

B2 (0.50000, 0.50000, 0.47013)

bulk kagome 5.98 5.98 1.89 90.00 90.00 120.0 B1 (0.56862, 0.13724, 0.25000)

B2 (0.56862, 0.43138, 0.25000)

B3 (0.86276, 0.43138, 0.25000)

B4 (0.13724, 0.56862, 0.75000)

B5 (0.43138, 0.56862, 0.75000)

B6 (0.43138, 0.86276, 0.75000)

(5,0) nanotube 19.30 19.30 1.62 90.00 90.00 60.00 B1 (0.53387, 0.62102, 0.75000)

B2 (0.43376, 0.66197, 0.25000)

B3 (0.35899, 0.64101, 0.75000)

B4 (0.33803, 0.56624, 0.25000)

B5 (0.37898, 0.46613, 0.75000)

B6 (0.46613, 0.37898, 0.25000)

B7 (0.56624, 0.33803, 0.75000)

B8 (0.64101, 0.35899, 0.25000)

B9 (0.66197, 0.43376, 0.75000)

B10 (0.62102, 0.53387, 0.25000)

(6,0) nanotube 20.34 20.34 1.62 90.00 90.00 120.0 B1 (0.63102, 0.67897, 0.00000)

B2 (0.67897, 0.63102, 0.50000)
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a b c α β γ Atomic positions

(Å) (Å) (Å) (◦) (◦) (◦)

B3 (0.45204, 0.63102, 0.00000)

B4 (0.54796, 0.67897, 0.50000)

B5 (0.32103, 0.45204, 0.00000)

B6 (0.36898, 0.54796, 0.50000)

B7 (0.36898, 0.32103, 0.00000)

B8 (0.32103, 0.36898, 0.50000)

B9 (0.54796, 0.36898, 0.00000)

B10 (0.45204, 0.32103, 0.50000)

B11 (0.67897, 0.54796, 0.00000)

B12 (0.63102, 0.45204, 0.50000)

δ6 flat sheet 1.71 1.71 15.15 90.00 90.00 60.00 B1 (0.00000, 0.00000, 0.50000)

δ3 sheet 2.92 2.92 15.58 90.00 90.00 120.0 B1 (0.33333, 0.66667, 0.50000)

B2 (0.66667, 0.33333, 0.50000)
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S2. Mechanical and thermodynamic stability for the bulk boron kagome lattice

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0 1 0 . 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0 1 0 . 0- 6 . 3

- 6 . 2

- 6 . 1

- 6 . 0

- 5 . 9

Le
ngt

h (
Å)

T i m e  ( p s )

 I
 I I
 I I I

I
I II I II

I I I I I

( a )

En
erg

y (
eV

/ato
m)

T i m e  ( p s )

( b )

FIG. S2. Results of the molecular dynamics simulation at 300 K for the bulk boron kagome

lattice. (a) Length evolution of three kinds of interatomic distances I, II, and III. The inset

exhibits a 1 × 1 × 2 supercell used to label the interatomic distances I, II, and III. (b)

Helmholtz free energy evolution.

To see the mechanical stability, the elastic constants Cij are calculated. For the hexagonal

bulk boron kagome lattice, there are five independent elastic constants C11, C12, C13, C33,

C44, and C66 = (C11 − C12)/2. Our calculations show that C11 = 286.2 GPa, C12 = 155.1

GPa, C13 = 51.4 GPa, C33 = 416.3 GPa, C44 = 72.2 GPa, and C66 = 65.6 GPa. According

to the mechanics criterion C11 > |C12|, 2C2
13 < C33(C11 + C12), C44 > 0, and 2C2

16 <

C66(C11 − C12) for hexagonal crystals in Ref. [1], we can easily figure out the bulk boron

kagome is mechanically stable.

The thermal stability at finite temperature can be determined by molecular dynamics

simulation. As an example, we perform a 10-ps ab initio molecular dynamics simulation

within a 3 × 3 × 9 supercell containing 486 atoms at 300 K for the bulk boron kagome

lattice. The canonical ensemble is used, and the time step is set to be 2 fs. After simulation,
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the atomic structure keeps intact without any lattice destruction, which suggests a good

structural stability. Specifically, three types of interatomic distances nearby each boron

atom keep small fluctuations around their balance lengths in the simulations, as shown in

Fig. S2 (a), and the Helmholtz free energies also have small fluctuation around the balance

value, as shown in Fig. S2 (b). Moreover, to test the effectiveness of the simulation, we

also relax the supercell structures generated by molecular dynamics, and the intact ground-

state configurations are obtained again, demonstrating that temperature induced atomic

vibrations in our molecular dynamics simulation have not destroyed the atomic structure.

S3. Charge density and band-resolved Fermi surface for the bulk boron kagome

The charge density of the bulk boron kagome lattice is displayed in Fig. S3 (a). We clearly

observe a zigzag-like distribution of electron cloud lying along the zigzag chains formed by

the bonds I. We reveal that the bonds I are formed by the unbalanced sp3 hybridization of

s, px, py, and pz orbitals but mainly from pz electrons (about 60%) and s electrons (about

20%), referred to as σ′ bonds. Compared with the sp-type σ bonds in δ6 borophene [2], the

bonds I here resemble, more or less, the sp hybridization of s and pz orbitals but contain

some px and py electrons due to the zigzag other than linear chains. At second level, a three-

center bonding scheme gives rise to the bonds II that comprise s, px and py orbitals and

thus the formation of in-plane triangular lattice, as shown in Fig. S3 (a), which is similar to

the bonding mechanism in the flat triangular boron sheets [3], named as σ′′ bonds. Finally,

there is very low densities along the so-called “bonds” III, that is, the “bonds” III are not

existent in the bulk boron kagome lattice although the length dIII = 1.892 Å is small enough

to form chemical bonds in pure boron systems. As a result, we can obtain the following

picture of bonding: the zigzag-distributed bonds I and the in-plane three-center bonds II

constitute the skeleton of bulk boron kagome lattice. Meanwhile, the length dI = 1.707 Å

being shorter than dII = 1.758 Å signifies the stronger bonding of the bonds I relative to

that of the bonds II.

In addition, the zigzag-like arrange of the bonds I combined with the absence of the so-

called “bonds” III means a easily deformed quality along the zigzag direction (z direction),

hinting a latent lattice instability (or charge density wave) on z direction, as demonstrated

by the softening kink modes around the qs point in the main text.
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Figure S3(b) exhibits the band-resolved Fermi surface with the projection of σ′ orbitals

for the bulk boron kagome, which indicates that the Fermi surface is formed by four bands

crossing the Fermi level.

( b )

( a )
I I II I I

FIG. S3. (a) Charge density for the bulk boron kagome. From left to right, the orange

contour represents the density of 0.87, 0.85, and 0.82 e/Å3. (b) Band-resolved Fermi surface

with the projection of σ′ orbitals for the bulk boron kagome.

S4. Fermi surface with the projections of σ′′ orbitals for the bulk boron kagome

The Fermi surface with the projections of σ′′ orbitals for the bulk boron kagome is shown

in Fig. S4. Unlike the σ′-orbital projected Fermi surface shown in Fig. 2(c) in the main

text, the σ′′ electrons distribute mainly on the regions away from the electronic wave vectors

kF ≈ 0.61 × ΓA on the Fermi surface. That is, the σ′′ electrons have opposite distribution

with that of the σ′ electrons on the Fermi surface.
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FIG. S4. Fermi surface with the projections of σ′′ orbitals for the bulk boron kagome.

S5. Fermi surface nesting function ζq for the bulk boron kagome

The calculated Fermi surface nesting functions ζq in three typical surfaces of the whole

BZ for the bulk boron kagome lattice are shown in Fig. S5(a). The corresponding results

along high-symmetry lines of the BZ are plotted in Fig. S5(b), in which the electron-phonon

coupling (EPC) parameters λq are also shown for comparison. From the definition of ζq

[4], the peaks of this function can be used for identifying nesting vectors which connect the

parallel Fermi sheets of the Fermi surface (except q = 0, where the peak is an artifactitious

result of the definition). As shown in Fig. S5(a), the ζq around the hexagonal cross section

including ΓMK have relatively high values compared with those in other regions of the

whole BZ, which can be explained by the rotational symmetry of the most regions of the

Fermi surface on the ΓA axis and thus more feasible nesting of the states connected by the

phonon wave vectors lying in the hexagonal plane with ΓMK. Remarkably, there is no clear

indication of strong nesting effect in the whole BZ, especially at the qs point, as shown

in Figs. S5(a) and S5(b), although the maximum EPC parameter λq is detected at the qs

point. This finding rules out the nesting factor as a possible cause of strong EPC in the

softening kink modes with wave vector qs.
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FIG. S5. (a) Fermi surface nesting functions ζq in three typical surfaces of the Fermi surface

for the bulk boron kagome. (b) Corresponding results along high-symmetry lines. The EPC

parameters λq are also shown for comparison.

S6. Breaking of electronic degeneracies induced by the softest mode ωs(qc) at the

point qc = 0.8× ΓA for the bulk boron kagome

Except Fermi surface nesting effect, the breaking of electronic degeneracies by lattice

fluctuations is another factor to cause strong EPC in the softening kink modes. To check

this factor, we focus on the softest mode ωs(qc) at the phonon wave vector qc = 0.8×ΓA ≈

qs, as shown in Fig. 3(a) in the main text. However, the polarization vectors of the modes

at qc are described by complex numbers. To gain real values of the polarization vectors, a

1 × 1 × 5 supercell of the bulk boron kagome is created to fold the qc point into the BZ

center, and then the vibrational properties of the created supercell are calculated. Based on

the folding principle and phonon energy difference, on can easily infer that the optical mode

E′′ at the Γ point in the 1× 1× 5 supercell, as shown in Fig. S6, is actually the softest mode

ωs(qc) at the qc point in the primitive cell. As shown in Fig. S6, this E′′ mode can induce

conspicuous atom displacements along zigzag direction (z direction), which easily drives the
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stretching of the sp-like I-type bonds in the system.

FIG. S6. Lateral and top views of the optical mode E′′ for the 1×1×5 bulk boron kagome.

To investigate the breaking of electronic degeneracies by the lattice fluctuations related

to the E′′ mode and the consequent removal of electronic weight from the electronic density

of states (EDOS), the required atom displacements induced by the E′′ mode are determined

by

∆τκ,α(x) =

√
M0

Mκ

eκ,αx, (1)

where Mκ is the nuclear mass of atom κ and M0 is the proton mass. From the vibrational

properties at the Γ point in the 1 × 1 × 5 supercell, the real polarization vectors eκ,α of

the E′′ mode can be obtained. Then the atom displacements related to a parameter x can

be easily calculated from equation (1). Here we select the atom displacements correspond

to the case with x = 1 Å. Through adding these atom displacements into the optimized

1× 1× 5 supercell, the required configuration with the influence of the E′′ mode is created.

At last, the band structure and EDOS for the 1×1×5 configuration with these added atom

displacements are calculated, as shown in Fig. 3(d) in the main text, in which the band

structure is unfolded into the BZ of the primitive cell.

Obviously, after considering the influence of the E′′ mode, the bands with spz orbitals

close to the Fermi level generate some avoided crossings, especially on the high-symmetry
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lines ΓA, ML, and KH, as shown in Fig. 3(d) in the main text, which demonstrates the

breaking of electronic degeneracies by the lattice fluctuations related to the E′′ mode that

can induce the stretching of the σ-like I-type bonds. As a result, the EDOS of spz states

around the Fermi level is evidently declined relative to that of undistorted structure, and

thus the decline of total EDOS, demonstrating the removal of electronic weight from the

EDOS close to the Fermi level.

S7. Mode-resolved isotropic Eliashberg spectral function α2F (ω) with the cumula-

tive EPC strength λ(ω) for each phonon branch of the bulk boron kagome
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FIG. S7. Phonon dispersion and mode-resolved isotropic Eliashberg spectral function

α2F (ω) with the cumulative EPC strength λ(ω) = 2
∫ ω

0
α2F (ω′)/ω′dω′ for each phonon

branch of the bulk boron kagome.
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