Supporting Information

Theoretical insights into the catalytic mechanism of propylene hydroformylation over Co-N-C materials

Yifei Chen,^{a, b, c} Yanan Zhu,^{a, b, c} Huaiqiang Dou,^{a, b, c} Hao Gong^{a, b, c*}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, R&D

Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China

^b Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China

^c State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

^{*} Corresponding author at: Key Laboratory for Green Chemical Technology of the Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China.

E-mail address: tjugonghao@tju.edu.cn.

Section1.

Formula for product selectivity

$$N_i = A_i - B_i \tag{S1}$$

$$S_{propane} = \frac{N_{propane}}{N_{isobutyraldehyde} + N_{n-butyraldehyde} + N_{propane}}$$
(S2)

$$S_{aldehyde} = \frac{N_{n-butyraldehyde} + N_{isobutyraldehyd}}{N_{n-butyraldehyde} + N_{isobutyraldehyd} + N_{propane}}$$
(S3)

$$S_{n-butyraldehyde} = \frac{N_{n-butyraldehyde}}{N_{n-butyraldehyde} + N_{isobutyraldehyd} + N_{propane}}$$
(S4)

$$S_{isobutyraldehyde} = \frac{N_{isobutyraldehyd}}{N_{n-butyraldehyde} + N_{isobutyraldehyd} + N_{propane}}$$
(S5)

where N represents the actual occurrence frequency of species generated per unit time, the *i* represents propane, n-butyraldehyde, and isobutyraldehyde, A represents the total occurrence frequency for all reactions that generate the species, and B represents the occurrence frequency for all reactions that consume the species.

Section2.

Table S1 The activation energy of each elementary process of propylene hydroformylation.

Serial	alamantany maaaga	Activati	Activation barrier /eV		
Number	elementary process	Ι	II	III	
1	$H_2 \gg H^* + H^*$	0	0	0	
2	$\mathrm{H}^* + * \not\!$	\	0.1	0.2	

3	$CO > CO^*$	0	0	0
4	CH ₃ CH=CH ₂ ≻ CH ₃ CH=CH ₂ *	0	0	0
5	$CH_{3}CH=CH_{2}^{*}+H^{*} \succ CH_{3}CH_{2}CH_{2}^{*}$	0.33	0.58	0.49
6	$CH_3CH_2CH_2^* \simeq CH_3CH = CH_2^* + H^*$	0.8	1.66	1.28
7	$CH_3CH=CH_2^* + H^* \simeq CH_3CHCH_3^*$	0.16	0.57	0.13
8	$CH_3CHCH_3^* \simeq CH_3CH=CH_2^*+H^*$	0.67	0.84	1.01
9	$CH_3CH_2CH_2^* + H^* > CH_3CH_2CH_3^*$	0.77	0.83	0.88
10	$CH_3CH_2CH_3^* \simeq CH_3CH_2CH_2^* + H^*$	0.26	0.95	0.43
11	CH ₃ CHCH ₃ [*] + H [*] → CH ₃ CH ₂ CH ₃ [*]	0.66	0.86	0.72
12	$CH_3CH_2CH_3^* > CH_3CHCH_3^* + H^*$	0.25	0.98	0.49
13	$CH_3CH_2CH_2^* + CO^* > CH_3CH_2CH_2CO^*$	0.79	0.52	0.70
14	$CH_3CH_2CH_2CO^* > CH_3CH_2CH_2^* + CO^*$	0.85	1.03	1.11
15	$CH_3CHCH_3^* + CO^* > CH_3CHCH_3CO^*$	0.41	0.62	0.45
16	CH ₃ CHCH ₃ CO [*] → CH ₃ CHCH ₃ [*] + CO [*]	0.11	0.82	0.88
17	$CH_3CH_2CH_2CO^* + H^* > $	0.42	0.72	0.95
	CH ₃ CH ₂ CH ₂ CHO*			
18	$CH_3CH_2CH_2CHO^* > CH_3CH_2CH_2CO^* +$	0.60	0.77	1.30
	H^*			
19	CH ₃ CHCH ₃ CO [*] + H [*] ≫ CH ₃ CHCH ₃ CHO [*]	0.59	0.70	1.01
20	CH ₃ CHCH ₃ CHO [*] ≻ CH ₃ CHCH ₃ CO [*] +H [*]	0.67	0.14	1.70
21	$H^*+H^* > H_2$	0.75	0.95	0.55
22	$CO^* > CO$	2.11	2.72	1.07
23	CH ₃ CH=CH ₂ [*] ≫CH ₃ CH=CH ₂	1.54	1.83	0.32
24	CH ₃ CH ₂ CH ₂ [∗] ≫ CH ₃ CH ₂ CH ₂	3.24	2.36	2.28
25	CH ₃ CHCH ₃ [∗] ≫ CH ₃ CHCH ₃	3.04	2.16	2.10
26	CH ₃ CH ₂ CH ₂ CO [*] ≯ CH ₃ CH ₂ CH ₂ CO	3.35	2.76	2.34
27	CH ₃ CHCH ₃ CO [∗] ≫ CH ₃ CHCH ₃ CO	3.07	3.89	2.09
28	CH ₃ CH ₂ CH ₃ [*] → CH ₃ CH ₂ CH ₃	1.62	1.85	0.77
29	CH ₃ CH ₂ CH ₂ CHO [*] → CH ₃ CH ₂ CH ₂ CHO	1.86	1.16	0.93

*I, II, and III in the table represent the three catalyst models of Co-N3-C, 0N-bridged and 2N-bridged, respectively.

Figure S1 The change of coverage over time within 10, 100, 1000 and 10000 ns on Co-N₃-C

Figure S2 The change of coverage over time within 10, 100, 1000 and 10000 ns on 0N-bridged

Figure S3 The change of coverage over time within 10,100, 1000 and 10000 ns on 2N-bridged

Serial	1 4	Activation barrier /eV			
Number	erementary process		II	III	
1	$H_2 \gg H^* + H^*$	303289	1529254	3547111	
2	$H_* + * \not\succ * + H_*$	\	325373	1079617	
3	$CO > CO^*$	4028	4033	404489	
4	$CH_3CH=CH_2 > CH_3CH=CH_2^*$	1626	1672	164709	
5	$CH_{3}CH=CH_{2}^{*}+H^{*} \succ CH_{3}CH_{2}CH_{2}^{*}$	910	8071	50	
6	$CH_3CH_2CH_2^* \simeq CH_3CH=CH_2^* + H^*$	3433	9	235	
7	$CH_3CH=CH_2^* + H^* > CH_3CHCH_3^*$	23517	8921	4209	
8	CH ₃ CHCH ₃ [*]	19368	15311	1595	
9	$CH_3CH_2CH_2^* + H^* \simeq CH_3CH_2CH_3^*$	3696	29578	447	
10	$CH_3CH_2CH_3^* \simeq CH_3CH_2CH_2^* + H^*$	6336	22506	712	
11	CH ₃ CHCH ₃ [*] + H [*] → CH ₃ CH ₂ CH ₃ [*]	10269	9076	265	
12	$CH_3CH_2CH_3^* \simeq CH_3CHCH_3^* + H^*$	7629	16123	0	
13	$CH_3CH_2CH_2^* + CO^* > CH_3CH_2CH_2CO^*$	73	1027	203	
14	$CH_3CH_2CH_2CO^* \times CH_3CH_2CH_2^*+CO^*$	0	64	124	
15	CH ₃ CHCH ₃ [*] + CO [*] ≻ CH ₃ CHCH ₃ CO [*]	623542	1356	22176	
16	CH ₃ CHCH ₃ CO [*] → CH ₃ CHCH ₃ [*] + CO [*]	622057	710	19827	
17	$CH_3CH_2CH_2CO^* + H^* \simeq CH_3CH_2CH_2CHO^*$	158389	2260731	270	
18	CH ₃ CH ₂ CH ₂ CHO [*] → CH ₃ CH ₂ CH ₂ CO [*] + H [*]	158321	2260214	270	
19	CH ₃ CHCH ₃ CO [*] + H [*] ≯ CH ₃ CHCH ₃ CHO [*]	639722	385517	2211	

Table S2 The occurrence frequency of each elementary process in propylene hydroformylation on

three models during 1	10000 ns	simul	lation	time.
-----------------------	----------	-------	--------	-------

20) $CH_3CHCH_3CHO^* \simeq CH_3CHCH_3CO^* + H^*$		385516	556
21	$H^*+H^* > H_2$	299200	1525471	3543024
22	$CO^* > CO$	0	0	400417
23	CH3CH=CH2 [*] ≫CH3CH=CH2	0	0	162280
24	$CH_3CH_2CH_2^* > CH_3CH_2CH_2$	0	0	0
25	CH ₃ CHCH ₃ [∗] ≯ CH ₃ CHCH ₃	0	0	0
26	CH ₃ CH ₂ CH ₂ CO [*] ≻ CH ₃ CH ₂ CH ₂ CO	0	0	0
27	CH ₃ CHCH ₃ CO [∗] ≯ CH ₃ CHCH ₃ CO	0	0	0
28	CH ₃ CH ₂ CH ₃ [*] ≻ CH ₃ CH ₂ CH ₃	0	0	0
29	CH ₃ CH ₂ CH ₂ CHO [*] → CH ₃ CH ₂ CH ₂ CHO	0	0	0
30	CH ₃ CHCH ₃ CHO [*] → CH ₃ CHCH ₃ CHO [*]	0	0	0

*I, II, and III in the table represent the three catalyst models of Co-N₃-C, 0N-bridged and 2N-bridged, respectively.

	Co-N ₃	0N-bridged	2N-bridged
S _{propane} /%	0	4.6	0
$S_{aldehyde}$ /%	100	95.4	100
$S_{n-butyraldehyde}$ /%	6.1	95.2	0
${ m S}_{ m isobutyraldehyde}$ /%	93.9	0.2	100

Table S3 The product selectivity on three models