Understanding the Charge Transfer Dynamics of Cu₂WS₄-CNT-FeOOH Ternary Composite for Photo-electrochemical Studies

Preeti Dagar^a, Nandan Ghorai^a, Manisha Bungla^b, Hirendra N. Ghosh^{a, c,d*} and Ashok K. Gangulb^{b,e,f*}

^a Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab-

140306, India

^b Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

^c Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

^d Department of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda 752050, Odisha, India

^e Department of Materials Science and Engineering, Indian Institute of Technology Delhi,

New Delhi-110016, India

^f Department of Chemical Sciences, Indian Institute of Science Education & Research, Berhampur, Laudigam, Odisha 760003, India

* Authors for correspondence

E-mail: ashok@chemistry.iitd.ac.in, hnghosh@barc.gov.in, hnghosh2004@gmail.com

Fig. S1 Raman spectra for Cu₂WS₄-CNT and Cu₂WS₄-CNT-FeOOH.

Fig. S2 Area selected for transmission electron microscopy elemental mapping of Cu_2WS_4 -CNT-FeOOH.

Fig. S3 Time resolved photoluminescence (TRPL) decay curve at 350 nm excitation wavelength.

The TRPL data has been fit using the following equation

$$y = y_0 + A_1 * exp\left(\frac{-(x - x_0)}{\tau_1}\right) + A_2 * exp\left(\frac{-(x - x_0)}{\tau_2}\right)$$

Here, y_0 , x_0 , A to the y-offset of the exponential fit, x-offset, scaling factor and τ is the decay time constant. The summary of TRPL fitting parameters of all samples is given in Table S1.

Table S1. Summary of TRPL fitting parameters of Cu₂WS₄ and composite samples.

Sample	a ₁	$ au_1$	a ₂	$ au_2$	τ_{avg} (ns)
Cu_2WS_4	1.03	0.15	0.07	6.62	0.56
Cu ₂ WS ₄ - FeOOH	1.12	0.15	0.08	5.51	0.49
Cu ₂ WS ₄ -CNT	1.02	0.13	0.08	2.43	0.31
Cu ₂ WS ₄ -CNT-FeOOH	1.35	0.13	0.06	2.58	0.23

Fig. S4 Transient absorption spectra of pristine FeOOH sample dispersed in ethanol solvent at different time delays after the 350 nm laser pump excitation.

Fig. S5 Mott-Schottky plot for Cu₂WS₄ and composites.

Sample	Current density (µA/cm ²) @1.23 V		Current densi	ity (μA/cm²) @1.8 V
	Dark	Light	Dark	Light
Cu ₂ WS ₄	0.06912	2.7715	0.2995	11.5842
Cu ₂ WS ₄ -CNT	1.6227	9.3094	5.7958	35.0290
Cu ₂ WS ₄ -FeOOH	0.7704	22.6016	2.3421	63.7840
Cu ₂ WS ₄ -CNT- FeOOH	0.5899	32.3281	4.7575	92.5006

Table S2. Comparison of current density values obtained @ 1.23 V and 1.8 V vs RHE in both

dark and illuminated conditions.

Table S3. Comparison of Photocurrent densities obtained by $(J_{light}-J_{dark})$ at 1.23 V and 1.8 V

vs. RHE where J_{light} and J_{dark} are the current densities under light and dark conditions.

Sample	Photocurrent density (μA/cm²) @1.23 V	Photocurrent density (µA/cm²) @1.8 V
Cu_2WS_4	2.7023	11.2847
Cu ₂ WS ₄ -CNT	7.6867	29.2332
Cu ₂ WS ₄ -FeOOH	21.8312	61.4419
Cu ₂ WS ₄ -CNT-FeOOH	31.7382	87.7431

Table S4. ABPE values calculated at 1.0 V vs. RHE from the LSV curves.

Sample	ABPE (%)
Cu ₂ WS ₄	0.0004
Cu ₂ WS ₄ -CNT	0.0012
Cu ₂ WS ₄ -FeOOH	0.0039
Cu ₂ WS ₄ -CNT-FeOOH	0.0062