A General Strategy to Stabilize the 1T-MoS₂ by Using MXene Heterostructures

and Unlock Its Hydrogen Evolution Reaction Capabilities

Yumiao Tian¹, Xiaochun Liu¹, Pengfei Hou¹, Yu Xie¹, Fei Du¹, Gang Chen¹, Aleksandra Vojvodic², and Xing Meng^{1, 2, 3}

¹ Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China

² Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America

³ Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P. R. China

* Authors to whom any correspondence should be addressed.

E-mail: mengxing@jlu.edu.cn (Xing Meng)

	1T-MoS ₂ -	2H-MoS ₂ -	1T-MoS ₂ -	2H-MoS ₂ -	1T-MoS ₂ -	2H-MoS ₂ -	1T-MoS ₂ -	2H-MoS ₂ -
	V ₂ CO ₂	V_2CO_2	Mo ₂ CO ₂	Mo ₂ CO ₂	V_2NO_2	V_2NO_2	Nb_2CO_2	Nb_2CO_2
a _h (Å)	9.938	9.893	9.902	9.852	9.928	9.917	9.378	9.421
b _h (Å)	5.732	5.714	5.713	5.731	5.735	5.722	5.427	5.433

Table S1. The lattice constant of the heterostructure

Figure S1. Electronic structures under different tensile strains. 1T-MoS₂: (a) and (b); V₂CO₂: (c) and (d).

Figure S2. During the slipping process, (a) changes in the energy of the heterostructure system, and (b) changes in the interlayer binding energy of the heterostructure.

Figure S3. Schematic diagram of electron injection in the heterostructure

	Work Function	(eV)
1T-MoS ₂	5.060	
2H-MoS ₂	5.712	
V ₂ CO ₂	6.695	
Nb ₂ CO ₂	5.820	
Ta ₂ CO ₂	5.413	
Cr ₂ CO ₂	8.010	
Mo ₂ CO ₂	7.402	
Ti ₂ NO ₂	5.989	
V ₂ NO ₂	6.135	

Table S2. Work Functions of MoS_2 and metallic MXenes with M_2XT_2 composition

Figure S4. Top view of (a) MoS₂-Mo₂CO₂, (b) MoS₂-V₂NO₂, and (c) MoS₂-Nb₂CO₂. Color code: S, yellow; Mo, purple; Nb, green; O, red; V, blue; C, brown; and N, grey.

Figure S5. Heterostructures plane-averaged charge density difference (a) MoS₂-Mo₂CO₂, (b) MoS₂-V₂NO₂, and (c) MoS₂-Nb₂CO₂

Table S3. Electron change of MoS ₂ in different heterostructures								
	1T-MoS ₂ -	2H-MoS ₂ -	1T-MoS ₂ -	2H-MoS ₂ -	1T-MoS ₂ -	2H-MoS ₂ -		
	Mo ₂ CO ₂	Mo ₂ CO ₂	V_2NO_2	V_2NO_2	Nb ₂ CO ₂	Nb_2CO_2		
Electron change	-0.271	-0.295	-0.061	-0.099	-0.121	-0.015		
of MoS ₂ (e)								

Figure S6. Phase transition energy barrier of MoS_2 from 1T phase to 2H phase

Figure S7. Hydrogen adsorption sequence (a) monolayer $1T-MoS_2$ and (b) $1T-MoS_2-V_2CO_2$

Figure S8. Pourbaix diagram of 1T-MoS2 under HER conditions (a) monolayer 1T-MoS₂ and (b)1T-MoS₂-V₂CO₂

Figure S9. The hydrogen adsorption free energy at different active sites on the basal plane of 1T-MoS₂-Mo₂CO₂ as a function of hydrogen coverage was investigated using structures of the same size as shown in Figure S4. The optimal ΔG_H of 0.086 eV was achieved at a hydrogen coverage of 16.67%.