Supporting Information

Probing Local Structure of Glass with Orientation-Dependent Luminescence

Yuichiro Tokoro^{1*}, Tetsuya Nakagawa², Shin-ichi Yamamoto¹, Toshio Koizumi¹ and Toshiyuki Oyama^{2*}

E-mail: tokoro@nda.ac.jp; oyama-toshiyuki-wz@ynu.ac.jp

Table of Contents

1. General Information	S1
2. Synthesis	S1
3. NMR spectra	S6
4. Crystallography	S20
5. Density functional theory (DFT) calculation	S26
6. Thermal analysis	S32
7. UV-vis absorption spectra	S33
8. Photoluminescence data	S34

1. General Information

Commercially available reagents and solvents were used as received, without further purification. Single crystals were grown by the slow diffusion of ethanol ((*S*)-**3a**-E) or hexane ((*S*)-**3a**-H, *rac*-**3a**, **3b**) into dichloromethane solutions. Crystalline powder samples for PXRD, photoluminescence spectroscopy, and thermal analysis were obtained by adding dichloromethane solution to ethanol, followed by filtration. Glass samples for the PXRD analysis were prepared by cooling the melt on glass plates or in vials with ice, followed by crushing. Film samples for photoluminescence spectra were prepared by addition of the macrocycles to 20 wt% toluene solution of ZEONEX 480 solution, followed by spin-coating onto glass plates. The ¹H and ¹³C NMR spectra were recorded on a Bruker BioSpin DRX500 NMR or JEOL JNM-ECZ500R spectrometer. (500 MHz) spectrometer, with sample solutions prepared using CD₂Cl₂. Chemical shifts are reported in δ units downfield of the internal reference (Me₄Si). High-resolution mass spectra (HRMS) were recorded using a Bruker Compact (APCI) or a Hitachi High-Technologies Nano Frontier LD (ESI) spectrometer. The PXRD experiments were performed on a Bruker D8 ADVANCE diffractometer with Cu K α (λ = 1.5406 Å) at room temperature. Simulated PXRD patterns were obtained using Mercury 2020.

2. Synthesis

Fig. S1 Synthesis of macrocycles.

(S)-2,2'-Bis(2-bromobenzyloxy)-1,1'-binaphthyl ((S)-1a)

3b

A solution of (*S*)-(-)-1,1'-bi-2-naphthol (4.58 g, 16.0 mmol), 2-bromobenzyl bromide (12.0 g, 48.0 mmol), potassium carbonate (8.85 g, 64.0 mmol) in *N*,*N*-dimethylformamide (48 mL) was stirred at 70 °C for 11 h, followed by addition of water (ca. 100 mL). The precipitate was collected by filtration and washed by water and methanol. The crude product was purified by recrystallization from dichloromethane/methanol to give a white solid (9.12 g, 14.6 mmol, 91% yield). Mp: 137-139 °C ¹H NMR (500 MHz, CD₂Cl₂): δ = 8.01 (d, 2H, Ar-*H*, *J* = 9.0 Hz), 7.92 (d, 2H, Ar-*H*, *J* = 8.2 Hz), 7.46 (m, 4H, Ar-*H*), 7.37 (ddd, 2H, Ar-*H*, *J* = 8.1, 6.7, 1.4 Hz), 7.26 (ddd, 2H, Ar-*H*, *J* = 8.4, 6.8, 1.5 Hz), 7.21 (d, 2H, Ar-*H*, *J* = 8.5 Hz), 7.03 (ddd, 2H, Ar-*H*, *J* = 7.9, 7.4, 1.8 Hz), 6.94 (td, 2H, Ar-*H*, *J* = 7.5, 1.2 Hz), 6.87 (m, 2H, Ar-*H*), 5.13 (m, 4H, -OCH₂-) ppm. ¹³C NMR (125 MHz, CD₂Cl₂): δ = 154.4, 137.2, 134.7, 132.7,

130.15, 130.10, 129.3, 128.7, 128.6, 127.8, 127.1, 125.8, 124.5, 122.0, 120.8, 115.9, 71.0 ppm. HRMS (ESI-TOF) calcd for $C_{34}H_{24}Br_2O_2$ [M]⁺: 622.0138; found: 622.0156. [α]_D²⁰ = -42 (*c* = 1.00, THF).

(R)-2,2'-Bis(2-bromobenzyloxy)-1,1'-binaphthyl ((R)-1a)

A solution of (*R*)-(-)-1,1'-bi-2-naphthol (2.86 g, 10.0 mmol), 2-bromobenzyl bromide (6.00 g, 24.0 mmol), potassium carbonate (4.15 g, 30.0 mmol) in *N*,*N*-dimethylformamide (30 mL) was stirred at 70 °C for 46 h, followed by addition of water (ca. 50 mL). The mixture was extracted with diethyl ether, washed with water and brine, dried over MgSO₄, and concentrated. The crude product was purified by recrystallization from dichloromethane/ethanol to give a white solid (4.49 g, 7.19 mmol, 72% yield). Mp: 137-139 °C ¹H NMR (500 MHz, CD₂Cl₂): δ = 8.00 (d, 2H, Ar-*H*, *J* = 9.2 Hz), 7.91 (m, 2H, Ar-*H*), 7.47-7.42 (m, 4H, Ar-*H*), 7.36 (ddd, 2H, Ar-*H*, *J* = 8.2, 6.7, 1.2 Hz), 7.25 (t, 2H, Ar-*H*, *J* = 7.4 Hz), 7.19 (d, 2H, Ar-*H*, *J* = 8.1 Hz), 7.03 (t, 2H, Ar-*H*, *J* = 7.5 Hz), 6.92 (t, 2H, Ar-*H*, *J* = 7.5 Hz), 6.85 (d, 2H, Ar-*H*, *J* = 7.5 Hz), 5.16-5.07 (m, 4H, -OCH₂-) ppm. ¹³C NMR (125 MHz, CD₂Cl₂): δ = 154.3, 137.2, 134.7, 132.7, 130.1, 129.3, 128.7, 128.5, 127.8, 127.0, 125.8, 124.4, 121.9, 120.7, 115.8, 70.8 ppm. HRMS (APCI-TOF) calcd for C₃₄H₂₅Br₂O₂ [M+H]⁺: 623.0216; found: 623.0202. [α]_D²⁰ = +47 (*c* = 1.00, THF).

2,2'-Bis(2-bromobenzyloxy)biphenyl (1b)

A solution of 2,2'-dihydoroxybiphenyl (1.49 g, 8.00 mmol), 2-bromobenzyl bromide (6.00 g, 24.0 mmol), potassium carbonate (4.42 g, 32.0 mmol) in *N*,*N*-dimethylformamide (24 mL) was stirred at 70 °C for 11 h, followed by addition of water (ca. 50 mL). The mixture was extracted with diethyl ether, washed with water and brine, dried over Na₂SO₄, and concentrated. The residue was subjected to column chromatography on silica gel with hexane/ethyl acetate (100/1 to 100/2) to give a white solid (3.55 g, 6.77 mmol, 85% yield). Mp: 65-66 °C. ¹H NMR (500 MHz, CD₂Cl₂): δ = 7.50 (m, 2H, Ar-*H*), 7.35 (m, 4H, Ar-*H*), 7.19 (d, 2H, Ar-*H*, *J* = 6.8 Hz), 7.09 (m, 6H, Ar-*H*), 7.01 (m, 2H, Ar-*H*), 5.06 (s, 4H, -OCH₂-) ppm. ¹³C NMR (125 MHz, CD₂Cl₂): δ = 156.4, 137.1, 132.8, 132.1, 129.4, 129.3, 128.9, 128.7, 127.9, 122.0, 121.5, 113.0, 70.1 ppm. HRMS (ESI-TOF) calcd for C₂₆H₂₁Br₂O₂ [M+H]⁺: 522.9903; found: 522.9908.

Macrocycle (S)-2a

*n*BuLi in hexane (1.6 M, 4.5 mL, 7.2 mmol) was added dropwise to a suspension of (*S*)-2,2'-bis(2-bromobenzyloxy)-1,1'-binaphthyl (2.25 g, 3.60 mmol) in diethyl ether (36 mL) at -17 °C under Ar. After stirring at -17 °C for 1 h, 9,10-bis(triethoxysilyl)anthracene¹ (1.81 g, 3.60 mmol) in diethyl ether (36 mL) was added over 2 h at -17 °C, followed by stirring at room temperature for 19 h. The reaction mixture was quenched with aq. 1 M HCl. The organic layer was collected, washed with water and brine, dried over Na₂SO₄, and concentrated. The residue was subjected to column chromatography on silica gel with hexane/ethyl acetate (100:1 to 100:3) to give a pale yellow solid (1.75 g, 2.04 mmol, 57% yield). Mp: 123-127 °C ¹H NMR (500 MHz, CD₂Cl₂): δ = 9.02 (d, 2H,

Ar-*H*, *J* = 8.8 Hz), 8.35 (d, 2H, Ar-*H*, *J* = 8.8 Hz), 8.26 (d, 2H, Ar-*H*, *J* = 7.5 Hz), 7.78 (d, 2H, Ar-*H*, *J* = 8.5 Hz), 7.66 (d, 2H, Ar-*H*, *J* = 9.1 Hz), 7.38 (m, 2H, Ar-*H*), 7.27 (m, 6H, Ar-*H*), 7.16 (m, 4H, Ar-*H*), 7.05 (d, 2H, Ar-*H*, *J* = 8.5 Hz), 6.92 (d, 2H, Ar-*H*, *J* = 7.9 Hz), 6.76 (d, 2H, Ar-*H*, *J* = 9.1 Hz), 4.13 (d, 2H, $-OCH_2$ -, *J* = 14.5 Hz), 4.00 (m, 2H, $-CH_2$ -CH₃), 3.89 (m, 6H, $-CH_2$ -CH₃), 3.63 (d, 2H, $-OCH_2$ -, *J* = 14.5 Hz), 1.37 (t, 6H, $-CH_2$ -CH₃, *J* = 6.9 Hz), 1.23 (t, 6H, $-CH_2$ -CH₃, *J* = 7.0 Hz) ppm. ¹³C NMR (125 MHz, CD₂Cl₂): δ = 155.4, 143.9, 137.3, 137.1, 135.4, 134.1, 134.0, 132.6, 130.7, 130.4, 130.0, 129.8, 128.7, 128.5, 127.1, 126.8, 125.9, 125.8, 125.4, 125.2, 124.2, 120.6, 117.5, 73.0, 59.8, 18.73, 18.66 ppm. ²⁹Si NMR (99 MHz, CD₂Cl₂): δ = -31.1 ppm. HRMS (ESI-TOF) calcd for C₅₆H₅₂O₆Si₂ [M]⁺: 876.3297; found: 876.3306. [α]_D²⁰ = +14 (*c* = 1.00, THF).

Macrocycle (R)-2a

*n*BuLi in hexane (1.6 M, 4.0 mL, 6.4 mmol) was added dropwise to a suspension of (*R*)-2,2'-bis(2-bromobenzyloxy)-1,1'-binaphthyl (2.00 g, 3.20 mmol) in diethyl ether (32 mL) at 0 °C under Ar. After stirring at 0 °C for 15 min, 9,10-bis(triethoxysilyl)anthracene (1.61 g, 3.20 mmol) in diethyl ether (32 mL) was added over 40 min at 0 °C, followed by stirring at room temperature for 20 h. The reaction mixture was quenched with aq. 1 M HCl. The organic layer was collected, washed with water and brine, dried over MgSO₄, and concentrated. The residue was subjected to column chromatography on silica gel with hexane/toluene (2:1 to 2:3) to give a pale yellow solid (0.647 g, 0.738 mmol, 23% yield). Mp: 127-130 °C. ¹H NMR (500 MHz, CD₂Cl₂): δ =9.03 (d, 2H, Ar-*H*, *J* = 9.2 Hz), 8.34 (d, 2H, Ar-*H*, *J* = 8.6 Hz), 8.26 (d, 2H, Ar-*H*, *J* = 7.2 Hz), 7.78 (d, 2H, Ar-*H*, *J* = 8.6 Hz), 7.67 (d, 2H, Ar-*H*, *J* = 8.6 Hz), 7.39 (t, 2H, Ar-*H*, *J* = 7.2 Hz), 7.37 (t, 2H, Ar-*H*, *J* = 7.6 Hz), 7.04 (d, 2H, Ar-*H*, *J* = 8.6 Hz), 6.93 (d, 2H, Ar-*H*, *J* = 8.0 Hz), 6.76 (d, 2H, Ar-*H*, *J* = 9.2 Hz), 4.13 (d, 2H, -OCH₂-, *J* = 14.9 Hz), 4.04-3.97 (m, 2H, -CH₂-CH₃), 3.94-3.83 (m, 6H, -CH₂-CH₃), 3.62 (d, 2H, -OCH₂-, *J* = 14.9 Hz), 1.37 (t, 6H, -CH₂-CH₃, *J* = 6.9 Hz), 1.23 (t, 6H, -CH₂-CH₃), *J* = 6.9 Hz) ppm. ¹³C NMR (125 MHz, CD₂Cl₂): δ = 155.3, 143.9, 137.2, 137.1, 135.3, 134.1, 133.9, 132.6, 130.7, 130.4, 130.0, 128.7, 128.4, 127.1, 126.7, 125.9, 125.8, 125.4, 125.2, 124.2, 120.6, 117.4, 72.9, 59.8, 18.72, 18.65 ppm. HRMS (APCI-TOF) calcd for C₅₆H₅₃O₆Si₂ [M+H]*: 877.3375; found: 877.3359. [α]_D²⁰ = -14 (*c* = 1.00, THF)

Macrocycle 2b

*n*BuLi in hexane (1.6 M, 2.5 mL, 4.0 mmol) was added dropwise to a suspension of 2,2'-bis(2-bromobenzyloxy)biphenyl (1.05 g, 2.00 mmol) in diethyl ether (40mL) at -17 °C under Ar. After stirring at -17 °C for 1 h, 9,10-bis(triethoxysilyl)anthracene (1.01 g, 2.00 mmol) in diethyl ether (40 mL) was added over 2 h at -17 °C, followed by stirring at room temperature for 19 h. The reaction mixture was quenched with aq. 1 M HCl. The organic layer was collected, washed with water and brine, dried over Na₂SO₄, and concentrated. The residue was subjected to column chromatography on silica gel with hexane/toluene (3/1 to 1/1) to give a pale yellow solid (0.296 g, 0.381 mmol, 19% yield). Mp: 208-210 °C ¹H NMR (500 MHz, CD₂Cl₂): δ = 9.17 (d, 2H, Ar-*H*, *J* = 9.1 Hz), 8.33 (dd, 2H, Ar-*H*, *J* = 7.4, 1.1 Hz), 8.21 (d, 2H, Ar-*H*, *J* = 8.8 Hz), 7.43 (t, 2H, Ar-*H*, *J* = 7.3 Hz), 7.34 (m, 4H, Ar-*H*), 7.13 (dd, 2H, Ar-*H*, *J* = 7.4, 1.7 Hz), 7.06 (m, 6H, Ar-*H*), 6.91 (td, 2H, Ar-*H*, *J* = 7.4, 1.0 Hz), 6.38 (dd, 2H, Ar-*H*, *J* = 8.2, 1.0 Hz), 4.29 (d, 2H, -OC*H*₂-, *J* = 15.8 Hz), 4.22 (m, 2H, -C*H*₂-CH₃), 4.12 (dq, 2H, -C*H*₂-CH₃ *J* = 10.3, 7.0 Hz), 4.01 (dq, 2H, -C*H*₂-CH₃ *J* = 10.2, 7.0 Hz), 3.82 (dq, 2H, -C*H*₂-CH₃ *J* = 10.2, 7.0 Hz), 3.45 (d, 2H, -OC*H*₂-, *J* = 16.1 Hz), 1.38 (br, t, 6H, -CH₂-CH₃, *J* = 7.1 Hz), 1.36 (br, t, 6H, -CH₂-CH₃, *J* = 7.1 Hz) ppm. ¹³C NMR (125 MHz, CD₂Cl₂): δ = 157.5, 144.0, 137.2, 135.5, 134.0, 131.9, 131.2, 130.79, 130.77, 129.1, 128.9, 128.2, 126.9, 125.6, 125.3, 124.4, 121.7, 114.2, 72.7, 60.1, 59.8, 18.8, 18.7 ppm. ²⁹Si NMR (99 MHz, CD₂Cl₂): δ = -32.0 ppm. HRMS (ESI-TOF) calcd for C₄₈H₄₈O₆Si₂ [M]*: 776.2984; found: 776.2984.

Macrocycle (S)-3a

Macrocycle (**S**)-2a (1.36 g, 1.60 mmol) in diethyl ether (3.2 mL) was added dropwise to a suspension of lithium aluminium hydride (0.121 g, 3.20 mmol) in diethyl ether (3.2 mL) at 0 °C under Ar. After stirring at room temperature for 11.5 h, the reaction mixture was quenched with aq. 1 M HCl. The mixture was extracted with diethyl ether, washed with water and brine, dried over Na₂SO₄, and concentrated. The residue was subjected to column chromatography on silica gel with hexane/toluene (3:1 to 1:1) to give a pale yellow solid (0.715 g, 1.02 mmol, 64% yield). Mp: 210-212 °C. ¹H NMR (500 MHz, CD₂Cl₂): δ = 8.65 (d, 2H, Ar-*H*, *J* = 9.1 Hz), 8.15 (d, 2H, Ar-*H*, *J* = 8.8 Hz), 7.97 (d, 2H, Ar-*H*, *J* = 7.2 Hz), 7.76 (d, 2H, Ar-*H*, *J* = 8.2 Hz), 7.62 (d, 2H, Ar-*H*, *J* = 8.8 Hz), 7.46 (t, 2H, Ar-*H*, *J* = 7.7 Hz), 7.30 (m, 6H, Ar-*H*), 7.23 (ddd, 2H, Ar-*H*, *J* = 8.4, 6.8, 1.3 Hz), 7.10 (m, 4H, Ar-*H*), 6.74-6.63 (m, 4H, Ar-*H*), 5.87 (d, 2H, -SiH₂-, *J* = 4.1 Hz), 5.40 (d, 2H, -SiH₂-, *J* = 4.4 Hz), 4.15 (d, 2H, -OCH₂-, *J* = 12.3 Hz), 3.95 (d, 2H, -OCH₂-, *J* = 12.6 Hz) ppm. ¹³C NMR (125 MHz, CD₂Cl₂): δ = 154.7, 144.3, 137.3, 137.0, 136.8, 134.1, 132.1, 131.3, 130.8, 130.2, 129.6, 129.3, 128.4, 128.0, 127.8, 126.7, 126.3, 126.0, 125.8, 124.4, 121.2, 117.8, 72.9 ppm. ²⁹Si NMR (99 MHz, CD₂Cl₂): δ = -45.7 ppm. HRMS (ESI-TOF) calcd for C₄₈H₃₆O₂Si₂Na [M+Na]⁺: 723.2146; found: 723.2144. [α]_D²⁰ = -32 (*c* = 1.00, THF).

Macrocycle (R)-3a

Macrocycle (*R*)-2a (0.526 g, 0.600 mmol) in diethyl ether (3.0 mL) was added dropwise to a suspension of lithium aluminium hydride (45.5 mg, 1.20 mmol) in diethyl ether (3.0 mL) at 0 °C under Ar. After stirring at room temperature for 9 h, the reaction mixture was quenched with aq. 1 M HCI. The mixture was extracted with diethyl ether, washed with water and brine, dried over MgSO₄, and concentrated. The residue was subjected to column chromatography on silica gel with hexane/toluene (3:1 to 1:1) to give a pale yellow solid (0.279 g, 0.398 mmol, 66% yield). Mp: 210-212 °C. ¹H NMR (500 MHz, CD₂Cl₂): δ = 8.64 (d, 2H, Ar-*H*, *J* = 9.2 Hz), 8.13 (d, 2H, Ar-*H*, *J* = 8.6 Hz), 7.96 (dd, 2H, Ar-*H*, *J* = 7.5, 1.2 Hz), 7.75 (d, 2H, Ar-*H*, *J* = 8.6 Hz), 7.62 (d, 2H, Ar-*H*, *J* = 8.6 Hz), 7.48-7.43 (m, 2H, Ar-*H*), 7.32-7.26 (m, 6H, Ar-*H*), 7.22 (t, 2H, Ar-*H*, *J* = 7.5 Hz), 7.12-7.05 (m, 4H, Ar-*H*), 6.69 (d, 2H, Ar-*H*, *J* = 8.6 Hz), 6.65 (d, 2H, Ar-*H*, *J* = 7.5 Hz), 5.86 (d, 2H, -SiH₂-, *J* = 4.6 Hz), 5.39 (d, 2H, -SiH₂-, *J* = 4.6 Hz), 3.93 (d, 2H, -OCH₂-, *J* = 12.6 Hz) ppm. ¹³C NMR (125 MHz, CD₂Cl₂): δ = 154.6, 144.2, 137.3, 136.9, 136.7, 134.0, 132.1, 131.2, 130.8, 130.1, 129.6, 129.3, 128.3, 127.9, 127.7, 126.7, 126.3, 125.9, 125.8, 124.4, 121.1, 117.7, 72.9 ppm. HRMS (APCI-TOF) calcd for C₄₈H₃₇O₂Si₂ [M+H]⁺: 701.2327; found: 701.2357. [α]_D²⁰ = +35 (*c* = 1.00, THF).

Macrocycle 3b

Macrocycle **2b** (0.233 g, 0.300 mmol) in diethyl ether (24 mL) and THF (3.0 mL) was added dropwise to a suspension of lithium aluminium hydride (22.8 mg, 0.600 mmol) in diethyl ether (3.0 mL) at 0 °C under Ar. After stirring at room temperature for 21 h, the reaction mixture was quenched with aq. 1 M HCl. The mixture was extracted with THF, washed with brine, dried over Na₂SO₄, and concentrated. The residue was recrystallized from dichloromethane/ethanol to give a pale yellow solid (0.129 g, 0.215 mmol,

72% yield). The single crystal for X-ray analysis was obtained by recrystallization from dichloromethane/hexane. Mp: 265-267 °C ¹H NMR (500 MHz, CD₂Cl₂): δ = 8.69 (d, 2H, Ar-*H*, *J* = 8.7 Hz), 8.08 (m, 4H, Ar-*H*), 7.42 (m, 6H, Ar-*H*), 7.22 (m, 4H, Ar-*H*), 7.03 (dd, 2H, Ar-*H*, *J* = 7.4, 1.7 Hz), 6.94 (m, 2H, Ar-*H*), 6.74 (td, 2H, Ar-*H*, *J* = 7.5, 1.1 Hz), 6.43 (dd, 2H, Ar-*H*, *J* = 8.4, 1.0 Hz), 5.93 (d, 2H, -SiH₂-, *J* = 4.4 Hz), 5.51 (d, 2H, -SiH₂-, *J* = 4.4 Hz), 4.27 (d, 2H, -OCH₂-, *J* = 13.6 Hz), 3.96 (d, 2H, -OCH₂-, *J* = 13.6 Hz) ppm. ¹³C NMR (125 MHz, CD₂Cl₂): δ = 156.5, 144.5, 137.4, 137.2, 136.5, 131.9, 131.5, 131.0, 130.8, 129.4, 129.1, 128.8, 128.0, 127.8, 126.8, 126.4, 125.8, 121.3, 114.4, 72.4 ppm. ²⁹Si NMR (99 MHz, CD₂Cl₂): δ = -46.1 ppm. HRMS (ESI-TOF) calcd for C₄₀H₃₂O₂Si₂Na [M+Na]⁺: 623.1833; found: 623.1845. *T*_{d1} = 252 °C. *T*_{d5} = 333 °C.

3. NMR Spectra

Fig. S3 ¹³C NMR spectrum of (S)-1a (20 ^oC, CD₂Cl₂).

Fig. S5 ¹³C NMR spectrum of (R)-1a (20 ^oC, CD₂Cl₂).

Fig. S6 1 H NMR spectrum of 1b (20 $^{\circ}$ C, CD₂Cl₂).

Fig. S7 ¹³C NMR spectrum of **1b** (20 ^oC, CD₂Cl₂).

Fig. S8 ¹H NMR spectrum of (S)-2a (20 ^oC, CD₂Cl₂).

Fig. S9 ¹³C NMR spectrum of (S)-2a (20 ^oC, CD₂Cl₂).

S10

Fig. S12 ¹³C NMR spectrum of (*R*)-2a (20 ^oC, CD₂Cl₂).

Fig. S13 ¹H NMR spectrum of 2b (20 ^oC, CD₂Cl₂).

Fig. S14 13 C NMR spectrum of 2b (20 o C, CD₂Cl₂).

Fig. S15 ²⁹Si NMR spectrum of 2b (20 ^oC, CD₂Cl₂).

Fig. S16 ¹H NMR spectrum of (S)-3a (20 ^oC, CD₂Cl₂).

Fig. S17 Extended ¹H NMR spectrum of (S)-3a (20 ^oC, CD₂Cl₂).

Fig. S18 ¹³C NMR spectrum of (S)-3a (20 ^oC, CD₂Cl₂).

Fig. S20 ¹H NMR spectrum of (S)-**3a** (20 $^{\circ}$ C, toluene- d_8).

Fig. S21 ¹H NMR spectrum of (S)-**3a** (80 $^{\circ}$ C, toluene- d_8).

Fig. S22 ¹H NMR spectrum of (S)-3a after heating to 220 ^oC (20 ^oC, CD₂Cl₂).

Fig. S23 H-H COSY spectrum of (S)-3a (20 $^{\circ}$ C, CD₂Cl₂).

Fig. S24 NOESY spectrum of (S)-3a (20 °C, CD₂Cl₂).

Fig. S25 ¹H NMR spectrum of (*R*)-**3a** (20 ^oC, CD₂Cl₂).

Fig. S26 ¹³C NMR spectrum of (*R*)-**3a** (20 ^oC, CD₂Cl₂).

S18

Fig. S28 13 C NMR spectrum of 3b (20 $^{\circ}$ C, CD₂Cl₂).

Fig. S29 ²⁹Si NMR spectrum of 3b (20 ^oC, CD₂Cl₂).

4. Cryatallography

A suitable crystal was mounted with mineral oil on a glass fiber and transferred to the goniometer of a Bruker D8 VENTURE or Rigaku XtaLAB PRO HPC CCD diffractometer with Cu K α (α = 1.5418 α , (*S*)-**3a**-E, (*S*)-**3a**-H, **3b**) or Mo K α radiation (α = 0.71073 α , *rac*-**3a**). The structures were solved by direct methods using SHELXT or Olex2, and refined using Olex2. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed on the carbon atoms according to the AFIX instructions.

Table S1	Crystallographic data

Crystal	(S)- 3a- E	(S)- 3a- H	rac- 3a	3b
Chemical formula	$C_{48}H_{36}O_{2}Si_{2}$	$C_{48}H_{35.787}O_2Si_2$	$C_{48}H_{36}O_2Si_2$	$C_{40}H_{32}O_2Si_2$
Formula weight	700.90	700.78	700.99	600.87
Color	colorless	yellow	yellow	green
Shape	block	block	block	block
Crystal system	triclinic	monoclinic	monoclinic	triclinic
Space group	<i>P</i> 1	<i>P</i> 1 2 ₁ 1	<i>P</i> 1 2 ₁ / <i>n</i> 1	PĪ
<i>a</i> (Å)	11.5209(5)	11.19827(2)	11.2799(5)	10.45340(10)
b (Å)	11.6461(5)	27.60749(6)	17.2391(8)	12.10100(10)
c (Å)	28.3488(12)	18.08478(4)	18.9684(7)	13.64410(10)
β(°)	91.906(2)	90.5504(2)	102.339(1)	104.5240(10)
Volume	3723.5(3)	5590.76(2)	3603.3(3)	1530.15(3)
Ζ	4	6	4	2
D _{calc} (g/cm ³)	1.250	1.249	1.292	1.304
$R_1 (I > 2\sigma(I))$	0.0609	0.0358	0.0336	0.0386
wR_2 (All reflections)	0.1751	0.1014	0.0855	0.1042
Reflections $(I > 2\sigma(I))$	25617	21511	6607	5873
Temperature (K)	223	223	93	223
CCDC number	2264847	1916744	2264848	1916745

Fig. S30 X-ray crystal structure of (S)-**3a**-E. Thermal ellipsoids were drawn at a 50% probability level. Hydrogen atoms were omitted for clarity.

Fig. S31 X-ray crystal structure of (*S*)-**3a**-H. Thermal ellipsoids were drawn at a 50% probability level. Hydrogen atoms were omitted for clarity.

Fig. S32 Photographs of (*S*)-**3a**-H. Aged (*S*)-**3a**-H exhibited green luminescence. Immediately after crushing, the inner portion exhibited blue luminescence. The color gradually changed to green within 3 min.

Fig. S33 X-ray crystal structure of *rac*-**3a**. Thermal ellipsoids were drawn at a 50% probability level. Hydrogen atoms were omitted for clarity.

Fig. S34 Crystal Packing of *rac*-**3a**. **a** Head-to-head and tail-to-tail structures of *rac*-**3a**. **b** Packing structure of *rac*-**3a**. **c** Chemical structure. Thermal ellipsoids were drawn at a 50% probability level. Hydrogen atoms were omitted for clarity. The anthracene rings are indicated by broken green lines.

Fig. S35 X-ray crystal structure of *rac*-**3a**. Thermal ellipsoids were drawn at a 50% probability level. Hydrogen atoms were omitted for clarity.

5. Density functional theory (DFT) calculation

5.1. Dimerization energy

DFT calculations were performed using ORCA 5.0³¹. The initial dimeric structures were extracted from the crystal structures, followed by optimization of hydrogens using the r²SCAN-3c³⁰ which includes D4 dispersion correction and also gCP correction to remove BSSE. The dimerization energies (ΔE_{total}) were evaluated using the sum of the interaction energy (ΔE_{int}) and strain energy (ΔE_{strain}). The term ΔE_{int} denotes the energy difference between the dimers and monomers with a dimeric conformation. ΔE_{strain} is the energy difference between the dimeric conformers.

Fig. S36 Dimeric structures of (*S*)-**3a**-E extracted from the crystal structures. The interaction (ΔE_{int}), strain (ΔE_{strain}), and dimerization (ΔE_{total}) energies are represented by the structures. Optimized hydrogen atoms by r²SCAN-3c were omitted for clarity.

Fig. S37 Dimeric structures of (*S*)-**3a**-H extracted from the crystal structures. The interaction (ΔE_{int}), strain (ΔE_{strain}), and dimerization (ΔE_{total}) energies are represented by the structures. Optimized hydrogen atoms by r²SCAN-3c were omitted for clarity.

Fig. S38 Dimeric structures of *rac-***3a** extracted from the crystal structures. The interaction (ΔE_{int}), strain (ΔE_{strain}), and dimerization (ΔE_{total}) energies are represented by the structures. Optimized hydrogen atoms by r²SCAN-3c were omitted for clarity.

Fig. S39 Virtual dimer of (*S*)-**3a** with π - π interaction optimized by r²SCAN-3c. The interaction (ΔE_{int}), strain (ΔE_{strain}), and dimerization (ΔE_{total}) energies are represented by the structures. Hydrogen atoms were omitted for clarity.

5.2. TD-DFT

Absorption and Emission energies were calculated at PBE0/def2-SVP//PBE0/def2-SVP level with Tamm–Dancoff approximation.

Excited state	Energy (nm)	f ^[a]	Composition
1	365.4	0.172189272	HOMO \rightarrow LUMO (92%)
2	317.5	0.009073822	HOMO–1 \rightarrow LUMO (55%)
			HOMO \rightarrow LUMO+1 (44%)
3	274.6	0.000996964	HOMO–2 \rightarrow LUMO (86%)
			HOMO \rightarrow LUMO+2 (12%)
4	248.9	0.002217679	HOMO–3 \rightarrow LUMO (98%)
5	245.1	0.000821870	HOMO \rightarrow LUMO+2 (53%)
			HOMO \rightarrow LUMO+3 (25%)
			HOMO–4 \rightarrow LUMO (14%)
6	237.4	0.000489571	HOMO \rightarrow LUMO+3 (43%)
			HOMO \rightarrow LUMO+2 (30%)
			HOMO–4 \rightarrow LUMO+2 (17%)
7	223.2	1.353841366	HOMO \rightarrow LUMO+1 (34%)
			HOMO–1 \rightarrow LUMO (26%)
			HOMO–2 \rightarrow LUMO+1 (13%)
			HOMO–5 \rightarrow LUMO (12%)
8	219.3	0.843003770	HOMO–5 \rightarrow LUMO (26%)
			HOMO–2 \rightarrow LUMO+1 (22%)
			HOMO \rightarrow LUMO+1 (18%)
			HOMO–1 \rightarrow LUMO (14%)
9	216.9	0.126593276	HOMO–4 \rightarrow LUMO (65%)
			HOMO \rightarrow LUMO+3 (29%)
10	206.5	0.026276795	HOMO–5 \rightarrow LUMO (44%)
			HOMO–1 \rightarrow LUMO+2 (35%)
			HOMO–2 \rightarrow LUMO+1 (14%)

 Table S2. Computed electronic absorption transition of 9,10-disilylanthracene using PBE0/def2-SVP//PBE0/def2-SVP.

[a] Oscillator strength.

Excited state	Energy (nm)	f [a]	Composition
1	433.9	0.000040249	HOMO \rightarrow LUMO (75%)
			HOMO–1 \rightarrow LUMO+1 (19%)
2	429.0	0.026206328	HOMO \rightarrow LUMO+1 (65%)
			HOMO–1 \rightarrow LUMO (29%)
3	378.9	0.000128060	HOMO–1 \rightarrow LUMO+1 (70%)
			HOMO \rightarrow LUMO (18%)
4	362.2	0.240325624	HOMO–1 \rightarrow LUMO (58%)
			HOMO \rightarrow LUMO+1 (26%)
5	321.4	0.000033056	HOMO–2 \rightarrow LUMO (43%)
			HOMO \rightarrow LUMO+2 (31%)
			HOMO–3 \rightarrow LUMO+1 (13%)
6	319.4	0.009567309	HOMO–2 \rightarrow LUMO+1 (39%)
			HOMO \rightarrow LUMO+3 (28%)
			HOMO–1 \rightarrow LUMO+2 (16%)
			HOMO–3 \rightarrow LUMO (13%)
7	298.5	0.000361759	HOMO–3 \rightarrow LUMO+2 (52%)
			HOMO–2 \rightarrow LUMO (36%)
8	296.5	0.028536375	HOMO–3 \rightarrow LUMO (54%)
			HOMO–2 \rightarrow LUMO+1 (33%)
9	284.9	0.014493768	HOMO-4 \rightarrow LUMO (88%)
10	284.2	0 000033175	
10	204.2	0.000030175	$\Box \cup W \cup = 4 \rightarrow \Box \cup W \cup T \mid (03\%)$

Table S3. Computed electronic absorption transition of a π -stacked dimer of 9,10-disilylanthracene using PBE0/def2-SVP//PBE0/def2-SVP.

[a] Oscillator strength.

LUMO (-2.25 eV)

LUMO+1 (-0.69 eV)

Fig. S40 Frontier orbitals of 9,10-disilylanthracene (PBE0/def2-SVP//PBE0/def2-SVP).

LUMO+2 (-0.15 eV)

Fig. S41 Frontier orbitals of a π -stacked dimer of 9,10-disilylanthracene (PBE0/def2-SVP//PBE0/def2-SVP).

Fig. S42 Optimized structures of a π-stacked dimer of 9,10-disilylanthracene (PBE0/def2-SVP//PBE0/def2-SVP). a, S₀. b, S₁.

6. Thermal analysis

Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were performed using a Shimadzu DTG-60 analyzer under helium flow. Each sample weighed ~5 mg. The samples were placed in aluminum pans. The heating and cooling rates were 10 K min⁻¹ and 2 K min⁻¹, respectively.

Fig. S43 DTA results at a scanning rate of +10 °C min⁻¹. **a**, The powder of (*S*)-**3a** melted at 212 °C in the first run (blue). In the second run (green), the glass of (*S*)-**3a** showed a baseline shift around 107 °C. **b**, The powder of (*S*)-**2a** (blue) showed a baseline shift around 104 °C, which indicated the powder was glass. The melting point of (*S*)-**3a**-H (green) is 232 °C. The crystals of **3b** (yellow) decomposed and melted above 240 °C so that the crystal structure was maintained in the photoluminescence measurement at 220 °C.

7. UV-vis absorption spectra

UV-vis absorption spectra were obtained using a SHIMADZU UV-1800 spectrometer.

Fig. S44 UV-vis spectra of (S)-2a (blue) and (S)-3a (red) in CHCl₃ (1.0×10^{-5} M).

8. Photoluminescence Data

Photoluminescence spectra of the solutions were obtained using a SHIMADZU RF-5300PC spectrometer. Photoluminescence spectra of the glasses, crystals and films were obtained using an Ocean Optics USB 4000 fiber spectrometer. The excitation wavelength was 365 nm. The sample temperature was controlled using a MSA FACTORY PH132 hot plate. A portable fan and ice bag was used for rapid cooling to 110-170 °C and 20 °C, respectively. Luminescence spectra and quantum yields of solution were also obtained on the Otsuka Electronics QE-2000 system. Luminescence quantum yields of the glassy and crystalline samples were obtained using a JASCO FP-8500 spectrometer.

Fig. S45 Photoluminescence spectra of (S)-2a (blue, λ_{ex} = 391 nm) and (S)-3a (red, λ_{ex} = 387 nm) in CHCl₃ (1.0 × 10⁻⁵ M).

Fig. S46 Photoluminescence spectra of (S)-3a. a, Cooling the melt of (S)-3a to 170 °C, followed by heating to 220 °C. b, Cooling the melt of (S)-3a to 140 °C, followed by heating to 220 °C. c, Cooling the melt of (S)-3a to 110 °C, followed by heating to 220 °C.
d, maintaining the melt of (S)-3a at 220 °C for 15 min, followed by cooling to 20 °C.

Fig. S47 Fitted photoluminescence spectra of (*S*)-**3a** by superposition of those of the powder and glass samples. **a**, Fitting the sample cooled to 170 °C. **b**, Fitting of the sample cooled to 140 °C. **c**, Fitting of the sample cooled to 110 °C.

Fig. S48 Fitted photoluminescence spectrum of (*S*)-**3a** by superposition of those immediately after melting and after aging followed by cooling. The superposition fitted well with the spectrum of the sample aged at 220 °C for 15 min, indicating that the dimers with π - π interactions were tightly bound during the aging process.

Fig. S49 Photoluminescence spectra of (S)-3a in ZEONEX at various temperatures. a, 2 wt%. b, 5 wt%. c, 10 wt%. d, 20 wt%.

 Table S4
 Photoluminescence quantum yield

······ ··· ······ ······ ····· ····· ····				
Compound	Condition	Φ_{PL}		
(S)- 2a	in CHCI ₃ (10 ⁻⁵ M)	0.99		
	powder	0.38		
(S)- 3a	in CHCI ₃ (10 ⁻⁵ M)	0.78		
	(S)- 3a -E	0.44		
	(S)- 3a -H	0.34		
	glass	0.57		
3b	in CHCl ₃ (10 ⁻⁵ M)	0.85		
	crystal	0.76		

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) cu_yt4_142_EtOH_2_0m_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: cu_yt4_142_EtOH_2_0m_a

Bond precision:	C-C = 0.0067 A	Wavelengt	h=1.54178
Cell:	a=11.5209(5)	b=11.6461(5)	c=28.3488(12)
	alpha=90.306(2)	beta=91.906(2)	gamma=101.613(2)
Temperature:	223 K		
	Calculated	Reported	l
Volume	3723.5(3)	3723.5(3	5)
Space group	P 1	P 1	
Hall group	P 1	P 1	
Moiety formula	C48 H36 O2 Si2	C48 H36	02 Si2
Sum formula	C48 H36 O2 Si2	C48 H36	02 Si2
Mr	700.95	700.99	
Dx,g cm-3	1.250	1.250	
Z	4	4	
Mu (mm-1)	1.170	1.169	
F000	1472.0	1478.0	
F000′	1477.72		
h,k,lmax	13,14,34	13,14,34	
Nref	27244[13622]	25617	
Tmin, Tmax	0.587,0.748	0.548,0.	754
Tmin'	0.514		
Correction meth AbsCorr = MULTI	od= # Reported T L -SCAN	jimits: Tmin=0.548 I	max=0.754
Data completene	ess= 1.88/0.94	Theta(max) = 68.2	40
R(reflections)=	0.0609(25265)		wR2(reflections)= 0.1751(25617)
S = 1.050	Npar=	1921	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) 6.97 Note PLAT230_ALERT_2_C Hirshfeld Test Diff for C14 --C15 . 6.0 s.u. PLAT230_ALERT_2_C Hirshfeld Test Diff for C24 --C25 6.2 s.u. PLAT230_ALERT_2_C Hirshfeld Test Diff for Si21 --C213 5.5 s.u. PLAT230_ALERT_2_C Hirshfeld Test Diff for C210 --C211 . 5.7 s.u. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.00668 Ang. PLAT410_ALERT_2_C Short Intra H...H Contact H344 ..H345 1.99 Ang. • 1_555 Check x,y,z = PLAT420_ALERT_2_C D-H Bond Without Acceptor Sil --H53 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Sil --H54 Please Check . --H79 PLAT420_ALERT_2_C D-H Bond Without Acceptor Si38 Please Check . PLAT420_ALERT_2_C D-H Bond Without Acceptor Si38 --H80 Please Check . PLAT420_ALERT_2_C D-H Bond Without Acceptor Si89 --H141 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Si89 --H142 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Si12 --H167 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Si12 --H168 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Si21 --H229 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Si21 --H230 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Si17 --H255 Please Check . PLAT420_ALERT_2_C D-H Bond Without Acceptor Si17 --H256 Please Check . PLAT420_ALERT_2_C D-H Bond Without Acceptor Si26 --H317 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Si26 --H318 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Si30 --H343 Please Check PLAT420_ALERT_2_C D-H Bond Without Acceptor Si30 --H344 Please Check PLAT767_ALERT_4_C INS Embedded LIST 6 Instruction Should be LIST 4 Please Check PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 Note C48 H36 O2 Si2 PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 225 Report PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF 14 Note PLAT918_ALERT_3_C Reflection(s) with I(obs) much Smaller I(calc) . 64 Check PLAT939_ALERT_3_C Large Value of Not (SHELXL) Weight Optimized S . 40.61 Check PLAT987_ALERT_1_C The Flack x is >> 0 - Do a BASF/TWIN Refinement Please Check

Alert level G

PLAT002_ALERT_2_G Num	ber of Distance or Angle Restraints on At	Site	26	Note
PLAT003_ALERT_2_G Num	ber of Uiso or Uij Restrained non-H Atoms		2	Report
PLAT033_ALERT_4_G Fla	ck x Value Deviates > 3.0 * sigma from Ze	ro .	0.252	Note
PLAT068_ALERT_1_G Rep	orted F000 Differs from Calcd (or Missing)	Please	Check
PLAT154_ALERT_1_G The	s.u.'s on the Cell Angles are Equal (N	ote)	0.002	Degree
PLAT172_ALERT_4_G The	CIF-Embedded .res File Contains DFIX Rec	ords	1	Report
PLAT173_ALERT_4_G The	CIF-Embedded .res File Contains DANG Rec	ords	10	Report
PLAT178_ALERT_4_G The	CIF-Embedded .res File Contains SIMU Rec	ords	1	Report
PLAT186_ALERT_4_G The	CIF-Embedded .res File Contains ISOR Rec	ords	1	Report
PLAT188_ALERT_3_G A N	on-default SIMU Restraint Value has been	used	0.0100	Report
PLAT333_ALERT_2_G Lar	ge Aver C6-Ring C-C Dist C127 -C140		1.42	Ang.
PLAT333_ALERT_2_G Lar	ge Aver C6-Ring C-C Dist C303 -C316		1.42	Ang.
PLAT769_ALERT_4_G CIF	Embedded explicitly supplied scattering	data	Please	Note
PLAT790_ALERT_4_G Cen	tre of Gravity not Within Unit Cell: Resd	. #	4	Note
C48 H36	02 Si2			

```
PLAT860_ALERT_3_G Number of Least-Squares Restraints .....
                                                                                             47 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
                                                                                              8 Note
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File
                                                                                              4 Note
PLAT960_ALERT_3_G Number of Intensities with I < - 2*sig(I) ...
                                                                                             43 Check
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                                              1 Info
PLAT982_ALERT_1_GThe C-f'=0.0192 Deviates from IT-value =PLAT982_ALERT_1_GThe O-f'=0.0524 Deviates from IT-value =PLAT982_ALERT_1_GThe Si-f'=0.2554 Deviates from IT-value =PLAT983_ALERT_1_GThe O-f"=0.0338 Deviates from IT-value =
                                                                                        0.0181 Check
                                                                                        0.0492 Check
                                                                                        0.2541 Check
                                                                                        0.0322 Check
PLAT983_ALERT_1_G The Si-f"=
                                     0.3254 Deviates from IT-Value =
                                                                                        0.3302 Check
```

```
ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
ALERT type 2 Indicator that the structure model may be wrong or deficient
ALERT type 3 Indicator that the structure quality may be low
ALERT type 4 Improvement, methodology, query or suggestion
ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 10/05/2023; check.def file version of 10/05/2023

Datablock cu_yt4_142_EtOH_2_0m_a - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) yt4_142_190125

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: yt4_142_190125

Bond precision: C-C = 0.0031 A Wavelength=1.54184 Cell: a=11.19827(2) b=27.60749(6) c=18.08478(4) alpha=90 beta=90.5504(2) gamma=90 Temperature: 223 K Calculated Reported Volume 5590.76(2) 5590.76(2)P 21 P 1 21 1 Space group Hall group P 2yb P 2yb C48 H35.65 O2 Si2, C48 Moiety formula H35.72 O2 Si2, C48 H36 O2 1(C48 H36 O2 Si2) Si2 C48 H35.787 O2 Si2 Sum formula C144 H107.36 O6 Si6 2102.20 Mr 700.78 1.249 Dx,g cm-3 1.249 Ζ 2 6 Mu (mm-1) 1.168 1.168 F000 2206.7 2215.7 F000′ 2215.31 13,34,22 h,k,lmax 13,33,22 21962[11223] Nref 21511 0.743,0.832 0.454,1.000 Tmin,Tmax Tmin' 0.719 Correction method= # Reported T Limits: Tmin=0.454 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 1.92/0.98 Theta(max)= 71.910 R(reflections) = 0.0358(20973) wR2(reflections) = 0.1014(21511) S = 1.045Npar= 1576

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. transparent PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) 7.09 Note 0.16 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference O10 --C1DA . PLAT410_ALERT_2_C Short Intra H...H Contact HOCA ..H5EA 1.90 Ang. . x,y,z = 1_555 Check . Please Check PLAT420_ALERT_2_C D-H Without Acceptor Si1 --H1A PLAT420_ALERT_2_C D-H Without Acceptor Si1 --H1B Please Check . --H4A PLAT420_ALERT_2_C D-H Without Acceptor Si4 Please Check . PLAT420_ALERT_2_C D-H Without Acceptor Si4 --H4B Please Check . PLAT420_ALERT_2_C D-H Without Acceptor Si3 --H7DA . Please Check PLAT420_ALERT_2_C D-H Without Acceptor Si2 --H8DA . Please Check PLAT420_ALERT_2_C D-H Without Acceptor Si2 --H9DA . Please Check PLAT420 ALERT 2 C D-H Without Acceptor Si3 --H0EA . Please Check PLAT420_ALERT_2_C D-H Without Acceptor Si5 --H3FA . Please Check PLAT420_ALERT_2_C D-H Without Acceptor Si5 --H4FAPlease Check . PLAT420_ALERT_2_C D-H Without AcceptorSi6--H5FAPLAT420_ALERT_2_C D-H Without AcceptorSi6--H6FA Please Check Please Check PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 38 Ang**3 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 Note C48 H35.65 O2 Si2 PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 7 Report

Alert level G

FORMU01_ALERT_1_G There is a discrepancy between the atom counts in	n the	
_chemical_formula_sum and _chemical_formula_moiety. This	s is	
usually due to the moiety formula being in the wrong for	mat.	
Atom count from _chemical_formula_sum: C48 H35.787 O2	Si2	
Atom count from _chemical_formula_moiety:C48 H36 O2 Si2		
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	25	Note
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms	16	Report
PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ	Please	Check
PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor	0.33	Check
PLAT068_ALERT_1_G Reported F000 Differs from Calcd (or Missing)	Please	Check
PLAT112_ALERT_2_G ADDSYM Detects New (Pseudo) Symm. Elem 2	85	%Fit
PLAT112_ALERT_2_G ADDSYM Detects New (Pseudo) Symm. Elem 2	85	%Fit
PLAT113_ALERT_2_G ADDSYM Suggests Possible Pseudo/New Space Group	P2221	Check
PLAT142_ALERT_4_G s.u. on b - Axis Small or Missing	0.00006	Ang.
PLAT143_ALERT_4_G s.u. on c - Axis Small or Missing	0.00004	Ang.
PLAT145_ALERT_4_G s.u. on beta Small or Missing	0.0002	Degree
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records	5	Report
PLAT173_ALERT_4_G The CIF-Embedded .res File Contains DANG Records	2	Report
PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records	2	Report
PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records	1	Report
PLAT230_ALERT_2_G Hirshfeld Test Diff for Si5C33 .	7.6	s.u.
PLAT230_ALERT_2_G Hirshfeld Test Diff for SilAC33 .	6.0	s.u.
PLAT230_ALERT_2_G Hirshfeld Test Diff for 012C138 .	7.2	s.u.
PLAT230_ALERT_2_G Hirshfeld Test Diff for Si6C116 .	5.3	s.u.
PLAT301_ALERT_3_G Main Residue Disorder(Resd 1)	15%	Note
PLAT301_ALERT_3_G Main Residue Disorder(Resd 2)	15%	Note
PLAT304_ALERT_4_G Non-Integer Number of Atoms in Resd 1	87.65	Check
PLAT304_ALERT_4_G Non-Integer Number of Atoms in Resd 2	87.72	Check

```
-C74 .
PLAT333_ALERT_2_G Large Aver C6-Ring C-C Dist C19
                                                                                  1.42 Ang.
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .....
                                                                                  123 Note
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #
                                                                                      2 Note
                C48 H35.72 O2 Si2
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #
                                                                                     3 Note
                C48 H36 O2 Si2
PLAT860_ALERT_3_G Number of Least-Squares Restraints .....
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
                                                                                  209 Note
                                                                                     3 Note
                                                                                     40 Note
PLAT933 ALERT 2 G Number of OMIT Records in Embedded .res File ...
                                                                                     2 Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                                      1 Info
                                                                              0.0181 Check
0.0492 Check
PLAT982_ALERT_1_G The C-f'= 0.0192 Deviates from IT-value = PLAT982_ALERT_1_G The O-f'= 0.0524 Deviates from IT-value =
PLAT982_ALERT_1_G The Si-f'= 0.2554 Deviates from IT-value =
                                                                                0.2541 Check
PLAT983_ALERT_1_G The O-f"= 0.0338 Deviates from IT-Value = PLAT983_ALERT_1_G The Si-f"= 0.3254 Deviates from IT-Value =
                                                                               0.0322 Check
                                                                               0.3302 Check
   0 ALERT level A = Most likely a serious problem - resolve or explain
   0 ALERT level B = A potentially serious problem, consider carefully
  20 ALERT level C = Check. Ensure it is not caused by an omission or oversight
  38 ALERT level G = General information/check it is not something unexpected
  11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
  26 ALERT type 2 Indicator that the structure model may be wrong or deficient
   6 ALERT type 3 Indicator that the structure quality may be low
  15 ALERT type 4 Improvement, methodology, query or suggestion
```

0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 03/05/2019; check.def file version of 29/04/2019

Datablock yt4_142_190125 - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) mo_20221129d3_0m_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: mo_20221129d3_0m_a

Bond precision:	C-C = 0.0020 A	Wavelength=	0.71073
Cell:	a=11.2799(5) alpha=90	b=17.2391(8) beta=102.339(1)	c=18.9684(7) gamma=90
Temperature:	93 K		
	Calculated	Reported	
Volume	3603.3(3)	3603.3(3)	
Space group	P 21/n	P 1 21/n 1	
Hall group	-P 2yn	-P 2yn	
Moiety formula	C48 H36 O2 Si2	C48 H36 O2	Si2
Sum formula	C48 H36 O2 Si2	С48 НЗ6 О2	Si2
Mr	700.95	700.99	
Dx,g cm-3	1.292	1.292	
Z	4	4	
Mu (mm-1)	0.140	0.140	
F000	1472.0	1473.2	
F000'	1473.19		
h,k,lmax	13,20,22	13,20,22	
Nref	6616	6607	_
Tmin,Tmax Tmin'		0.705,0.74	5
Correction metho AbsCorr = NONE	od= # Reported T I	Limits: Tmin=0.705 Tma	x=0.745
Data completenes	ss= 0.999	Theta(max) = 25.370	
R(reflections)=	0.0336(5630)		wR2(reflections)=
S = 1.034	Npar=	485	0.0000(0007)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

PLAT053_ALERT_1_C	Minimum Crystal	Dimension	Missing	(or Error)	• • •	Please	Check
PLAT054_ALERT_1_C	Medium Crystal	Dimension	Missing	(or Error)	• • •	Please	Check
PLAT055_ALERT_1_C	Maximum Crystal	Dimension	Missing	(or Error)	• • •	Please	Check
PLAT420_ALERT_2_C	D-H Bond Withou	t Acceptor	Si01	H01A	•	Please	Check
PLAT420_ALERT_2_C	D-H Bond Withou	t Acceptor	Si01	H01B	•	Please	Check
PLAT420_ALERT_2_C	D-H Bond Withou	t Acceptor	Si02	H02A	•	Please	Check
PLAT420_ALERT_2_C	D-H Bond Withou	t Acceptor	Si02	H02B	•	Please	Check
PLAT767_ALERT_4_C	INS Embedded LI	ST 6 Instru	uction Sh	ould be LIS	ST 4	Please	Check
PLAT906_ALERT_3_C	Large K Value i	n the Analy	ysis of V	ariance	• • •	2.448	Check
PLAT911_ALERT_3_C	Missing FCF Ref	l Between 1	Chmin & S	Th/L = 0.	600	7	Report

Alert level G

PLAT333_ALERT_2_G Large Aver C6-Ring C-C Dist COOG -COOY .	1.43 Ang.
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	88 Note
PLAT769_ALERT_4_G CIF Embedded explicitly supplied scattering data	Please Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	1 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	3 Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	15 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
10 ALERT level C = Check. Ensure it is not caused by an omission or oversight
6 ALERT level G = General information/check it is not something unexpected
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
6 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 10/05/2023; check.def file version of 10/05/2023

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) yt5_010_190218

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: yt5_010_190218

Bond precision: C-C = 0.0023 A Wavelength=1.54184 Cell: a=10.4534(1) b=12.1010(1) c=13.6441(1) alpha=110.811(1) beta=104.524(1) qamma = 95.283(1)Temperature: 223 K Calculated Reported 1530.15(3) Volume 1530.15(3)Space group P -1 P -1 Hall group -P 1 -P 1 Moiety formula C40 H32 O2 Si2 C40 H32 O2 Si2 Sum formula C40 H32 O2 Si2 C40 H32 O2 Si2 Mr 600.84 600.87 1.304 1.304 Dx,g cm-3 2 Ζ 2 Mu (mm-1) 1.329 1.329 F000 632.0 634.7 F000′ 634.59 h,k,lmax 12,14,16 12,14,16 Nref 5994 5873 0.741,0.819 0.647,1.000 Tmin,Tmax Tmin' 0.688 Correction method= # Reported T Limits: Tmin=0.647 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.980 Theta(max) = 71.750R(reflections) = 0.0386(5385) wR2(reflections) = 0.1042(5873) S = 1.041Npar= 413

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. transparent --H1A PLAT420_ALERT_2_C D-H Without Acceptor Si1 Please Check . PLAT420_ALERT_2_C D-H Without Acceptor --H1B Si1 Please Check . PLAT420_ALERT_2_C D-H Without Acceptor Si2 --H2A Please Check PLAT420_ALERT_2_C D-H Without Acceptor Si2 --H2B Please Check PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 38 Report

Alert level G

PLAT068_ALERT_1_G Report	ed F000 Differ	s from Calcd (or	r Missing)	Please	Check
PLAT154_ALERT_1_G The s.	u.'s on the Ce	ll Angles are E	qual(Note)	0.001	Degree
PLAT720_ALERT_4_G Number	of Unusual/Nor	n-Standard Labe	ls	16	Note
PLAT910_ALERT_3_G Missin	ng # of FCF Ref	lection(s) Below	w Theta(Min).	1	Note
PLAT912_ALERT_4_G Missir	ng # of FCF Ref	lections Above S	STh/L= 0.600	81	Note
PLAT978_ALERT_2_G Number	C-C Bonds with	h Positive Resid	dual Density.	13	Info
PLAT982_ALERT_1_G The C	C-f'= 0.0192	Deviates from	IT-value =	0.0181	Check
PLAT982_ALERT_1_G The C	D-f'= 0.0524	Deviates from	IT-value =	0.0492	Check
PLAT982_ALERT_1_G The Si	-f'= 0.2554	Deviates from	IT-value =	0.2541	Check
PLAT983_ALERT_1_G The C	D-f"= 0.0338	Deviates from	IT-Value =	0.0322	Check
PLAT983_ALERT_1_G The Si	-f"= 0.3254	Deviates from	IT-Value =	0.3302	Check

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 03/05/2019; check.def file version of 29/04/2019

