Supplementary Information

Highly efficient near-infrared solid solution phosphors with excellent thermal stability and tunable spectra for pc-LED light source toward NIR spectroscopy applications

Tianchun Lang^{a,*}, Qunyang Zhao^a, Xiaolong Jing^{a,d}, Gaoxuanyu Guan^a, Shuangqiang Fang^{b,*}, Qinping Qiang^a, Lingling Peng^a, Tao Han^c, Alexey N. Yakovlev^d, Bitao Liu^{a,*} ^a College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, China

^b College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China

^c School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China

^d Institute of Chemical and Oil-Gas Technologies, T. F. Gorbachev Kuzbass State Technical University, Kemerovo, 650000, Russia

* Corresponding author.

E-mail addresses: <u>leeltc@126.com</u> (T. Lang), fsq1025@163.com (S. Fang), liubitao007@163.com (B. Liu)

Fig.S1 Rietveld refinement of GLASB:Cr³⁺ (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5).

Fig. S2 SEM images of GLASB: Cr^{3+} (left, x = 0; and right, x = 0.2) with ×5 kx magnifications.

Fig. S3 (a) UV-vis-NIR absorption spectra of GLASB:Cr³⁺ (x=0-0.5). (b, c) The fitting of the corresponding band gap energies of GLASB:Cr³⁺ (x=0 and 0.2) phosphors.

Fig. S4 Calculated electronic band structure

Fig. S5 Tanabe-Sugano (3d3) diagram.

Fig. S6 The linear relationship between the octahedral distortion (Δd) and dissolved x content

Parameters	x=0	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5		
Space group	Hexagonal							
$\alpha/\beta/\gamma$	90°/90°/120							
a/b/c (Å)	7.229/	7.232/	7.249/	7.267/	7.315/	7.332/		
	9.313/	9.324/	9.328/	9.351/	9.386/	9.392/		
	16.187	16.209	16.222	16.243	16.302	16.336		
Cell volume (Å ³)	1089	1091.1	1091.8	1093.9	1095.3	1095.9		
R_{wp}	7.11%	6.72%	5.74%	5.75%	6.11%	5.35%		
R _p	5.36%	5.35%	4.68%	4.78%	5.78%	4.79%		
χ^2	1.27%	1.38%	1.33%	1.12%	1.22%	1.33%		

Table S1. Refined Crystallographic Parameters for GLASB:Cr³⁺.

Table S2. Selected (Al, Sc, Cr)-O bond lengths (Å) of $GLASB:Cr^{3+}$.

bond lengths	X=0	X=0.2
(Al, Sc, Cr)-O1	1.8672 (5)	1.8678(2)
(Al, Sc, Cr)-O2	1.9012 (4)	1.9115(3)
(Al, Sc, Cr)-O3	1.9081 (1)	1.9085(1)
(Al, Sc, Cr)-O4	1.9080 (4)	1.9083(3)
(Al, Sc, Cr)-O5	1.9009 (2)	1.9112(4)
(Al, Sc, Cr)-O6	1.8688 (3)	1.8791(5)
Average	1.8923	1.8978

Compound	Peak	FWHM	$\Delta d (\times 10^{-4})$	λ_{oct}	σ^2_{oct}
x=0.0	747	128	2.31	1.0235	5.08
x=0.1	789	167	4.38	1.0265	5.17
x=0.2	806	196	7.08	1.0338	5.39
x=0.3	843	182	8.22	1.0440	5.51
x=0.4	858	179	11.57	1.0537	5.60
x=0.5	866	177	13.15	1.0654	5.76

Table S3. Performance parameters for $GLASB:Cr^{3+}$ (x=0-0.5).

Table S4. Luminescent parameters of Cr^{3+} in different host materials and photoelectric

Phosphor	λ _{max} (nm)	FWHM (nm)	IQE (%)	TQ at 150 ℃ (%)	NIR output power/efficiency of pc-LED	Ref.
GLASB:Cr ³⁺	806	196	93.6	105.7	46 mW/37% @100 mA	This work
$Ca_{3}Sc_{2}Si_{3}O_{12}{:}Cr^{3+}$	740	140	91	100	650-1000	[1]
$Ca_2LuHf_2Al_3O_{12}{:}Cr^{3+}$	785	145	-	-	3.1 mW/14% @120 mA	[2]
$Ca_3Ga_2Ge_3O_{12}{:}Cr^{3+}$	803	267	-	90%	27.1 mW/16.3% @100 mA	[3]
ScBO ₃ :Cr ³⁺	800	120	65	51	26 mW/7% @120 mA	[4]
La ₃ Ga ₅ GeO ₁₄ :Cr ³⁺	750	330	-	-	18.2 mW/- @350 mA	[5]
$Ca_2LuZr_2Al_3O_{12}{:}Cr^{3+}$	752	117	69	60	2.44 mW/4.1% @120 mA	[6]
NaInP ₂ O ₇ :Cr ³⁺	856	133	71.3	47	39.1 mW/10.9% @120 mA	[7]
$NaScSi_2O_6{:}Cr^{3+}$	840	140	-			[8]
LiScP ₂ O ₇ :Cr ³⁺	880	170	38		19 mW@100 mA	[9]
InBO ₃ :Cr ³⁺	820	138	46		37.50 mW@120 mA	[10]
LiInP ₂ O ₇ :Cr ³⁺	860	165	20		6.42 mW@100 mA	[11]
NaScGe ₂ O ₆ :Cr ³⁺	895	162	40.2		12.07 mW@350 mA	[12]
LiGaP ₂ O ₇ :Cr ³⁺	846	170	48		28.10 mW@120 mA	[13]

properties of the fabricated NIR pc-LED

Reference:

 Z. Jia, C. Yuan, Y. Liu, X.-J. Wang, P. Sun, L. Wang, H. Jiang, J. Jiang, Light: Sci. Appl. 2020, 9, 86.

[2] L. Zhang, D. Wang, Z. Hao, X. Zhang, G.-H. Pan, H. Wu, J. Zhang, Adv. Opt. Mater. 2019, 7, 1900185.

[3] T. C. Lang, M. S. Cai, S. Q. Fang, T. Han, S. S. He, Q. Wang, G. Ge, J. Wang, C. Z. Guo, L. L. Peng, S. X. Cao, B. T. Liu, V. Korepanov, A. Yakovlev and J. B. Qiu, Adv. Opt. Mater. 2022, 10, 2101633.

[4] Q. Y. Shao, H. Ding, L. Q. Yao, J. F. Xu, C. Liang, J. Q. Jiang, Photoluminescence properties of a ScBO₃:Cr³⁺ phosphor and its applications for broadband near-infrared LEDs, RSC Adv. 2018, 8, 12035-12042.

[5] V. Rajendran, M. H. Fang, G. N. De Guzman, T. Lesniewski, S. Mahlik, M. Grinberg, G. Leniec, S. M. Kaczmarek, Y. S. Lin, K. M. Lu, C. M. Lin, H. Chang, S. F. Hu, R. S. Liu, Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications, ACS Energy Lett. 2018, 3, 2679-2684.

[6] L. L. Zhang, S. Zhang, Z. D. Hao, X. Zhang, G. H. Pan, Y. S. Luo, H. J. Wu, J.
H. Zhang, A high efficiency broad-band near-infrared Ca₂LuZr₂Al₃O₁₂:Cr³⁺ garnet phosphor for blue LED chips, J. Mater. Chem. C 2018, 6, 4967-4976

[7] Q. Wang, S. Wang, T. Tan, J. Wang, R. Pang, D. Li, H. Zhang, Efficient Cr³⁺-activated NaInP₂O₇ phosphor for broadband near-infrared LED applications. Inorganic Chemistry Frontiers, 2022, 9, 3692-3701.

[8] Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang, Z. Li, Y. Dong and J. Jiang, Broadband near-infrared light source derived from Cr³⁺-doped phosphors and a blue LED chip, Opt. Lett., 2018, 43, 5251-5254

[9] L. Yao, Q. Shao, S. Han, C. Liang, J. He and J. Jiang, Enhancing near-infrared photoluminescence intensity and spectral properties in Yb³⁺ codoped LiScP₂O₇:Cr³⁺, Chem. Mater., 2020, 32, 2430-2439

[10] Z. S. Sun, Q. X. Ning, W. Y. Zhou, J. B. Luo, P. C. Chen, L. Y. Zhou, Q. Pang and X. G. Zhang, Structural and spectroscopic investigation of an efficient and broadband NIR phosphor InBO₃:Cr³⁺ and its application in NIR pc-LEDs, Ceram. Int., 2021, 47, 13598-13603

[11] H. S. Zhang, J. Y. Zhong, X. L. Zhang, H. X. Yang, Z. F. Mu and W. R. Zhao, Achieving an ultra-broadband infrared emission through efficient energy transfer in LiInP₂O₇:Cr³⁺, Yb³⁺ phosphor, J. Alloys Compd., 2021, 894, 162386

[12] X. F. Zhou, W. Y. Geng, J. Y. Li, Y. C. Wang, J. Y. Ding and Y. H. Wang, An Ultraviolet-Visible and Near-InfraredResponded Broadband NIR Phosphor and Its NIR Spectroscopy Application, Adv. Opt. Mater., 2020, 8, 1902003

[13] C. X. Yuan, R. Y. Li, Y. F. Liu, L. L. Zhang, J. H. Zhang, G. Leniec, P. Sun, Z. H.
Liu, Z. H. Luo, R. Dong and J. Jiang, Efficient and Broadband LiGaP₂O₇:Cr³⁺
Phosphors for Smart Near-Infrared Light-Emitting Diodes, Laser Photonics Rev., 2021, 2100227