1	
2	Supporting Information
3	
4	Enhancing the performance of a cylindrical nanopore in osmotic power generation
5	through designing the waveform of its inner surface
6	
7	Chung-Wei Liu* and Jyh-Ping Hsu
8	Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
9	Tel: 886-2-33663055; e-mail: genius870930@gmail.com
10	

11 1. The frequency and amplitude of the waveform assumed for the nanopore wall

Table S1 The frequency f, wavelength λ , and width W assumed for the waveform of the

- nanopore wall.

f	λ	W
[nm ⁻¹]	[nm]	[nm]
0.5	4π	2π
1	2π	1π
2	1π	$(1/2)\pi$
4	$(1/2)\pi$	$(1/4)\pi$
8	$(1/4)\pi$	$(1/8)\pi$
16	(1/8)π	(1/16) <i>π</i>

Table S2 The amplitude a and height H of the waveform assumed for the nanopore wall.

а	Н	
[nm]	[nm]	
1/4	1/2	
1/2	1	
1	2	
2	4	
4	8	
8	16	

2	Table S3 Values of physical parameter			
	Name	Symbol	Value	
	Radius of computational domain	R_R	1000 nm	
	Length of computational domain	L_R	1000 nm	
	Radius of nanopore	R_N	20 nm	
	Length of nanopore	L_N	600 nm	
	Gas constant	R	8.314 J/(mol [.] K)	
	Faraday constant	F	96485 C/mol	
	Valence of Na ⁺	z_1	1	
	Valence of Cl-	<i>z</i> ₂	-1	
	Diffusivity of Na ⁺	D_1	$1.33 \times 10^{-9} \text{ m}^2/\text{s}$	
	Diffusivity of Cl ⁺	D_2	$2.03 \times 10^{-9} \text{ m}^2/\text{s}$	
	Diffusivity of Mg ²⁺	D_3	$7.10 \times 10^{-10} \text{ m}^2/\text{s}$	
	Diffusivity of La ³⁺	D_4	$6.00 \times 10^{-10} \text{ m}^2/\text{s}$	
	Vacuumm permittivity	ε_0	$8.85 \times 10^{-12} \text{ F/m}$	
	Permittiivity of NaCl solution	ε	$6.95 \times 10^{-10} \text{ F/m}$	
	Viscosity of NaCl solution	μ	0.001 Pa · s	
	Density of NaCl solution	ρ	998 kg/m ³	
	Surface charge density of nanopore	σ	-0.01 C/m ²	
	Salt concentration (high)	C_H	10, 50, 100 mM	
	Salt Concentration (low)	C_L	1 mM	

Physical parameters and schematic diagram with boundary conditions Table S3 Values of physical parameter

Table S4 Boundary conditions assumed in numerical modeling

Scheme		Surface	Navier -Stokes	Nernst -Planck	Poisson
A	B	AB	$p = 0$ $n \cdot \left[\mu \left(\nabla u + \left(\nabla u\right)^{T}\right)\right] = 0$	$C_i = C_L$	$\phi = 0$
		BC, FG	slip	$n \cdot J_i = 0$	uncharged - $n \cdot (\varepsilon \nabla \phi) = 0$
	D C	CD, DE, EF	no slip	$n \cdot J_i = 0$	$-n\cdot(\varepsilon\nabla\phi)=\sigma$
		HG	$p = 0$ $n \cdot \left[\mu \left(\nabla u + \left(\nabla u\right)^{T}\right)\right] = 0$	$C_i = C_H$	$\phi = 0$
Н	G	АН	Axial symmetry	Axial symmetry	Axial symmetry

Fig. S1. Current-voltage (I-V) curve for a smooth conical nanopore, (a), and a conical 5 nanopore with designed interfacial nanostructures (DINS), (b), at $L_N = 600 \text{ nm}$, $R_{tip} = 6 \text{ nm}$, 6 $R_{base} = 40 \text{ nm}$, $C_H = 50 \text{ mM}$, $C_L = 1 \text{ mM}$, and T = 303 K. Solid line: simulated results of Ren *et al.* 7 [S1]; dotted line: present results.

1 4. Choice of computation domain and mesh size

4 Fig. S2. Variation of ionic current with the size of computation domain $({}^{R_{R}=L_{R}})$ for the 5 case of square waveform at $f = 0.5 \text{ nm}^{-1}$, a = 0.5 nm, and $(C_{H}/C_{L}) = 50$.

8 Fig. S3. Variation of ionic current with size of element on nanopore surface at $f = 0.5 \text{ nm}^{-1}$, 9 a = 0.5 nm, and $(C_H/C_L) = 50$

- 1 5. Effective bulk concentration range

4 Fig. S4. Variation of ionic current with bulk concentration ratio (C_H/C_L) at $f = 0.5 \text{ nm}^{-1}$ and 5 a = 0.5 nm

1 6. Influence of frequency and amplitude of the waveform on the I + and I -

3 Fig. S5. Variation of I_+ with f, (a), and H(=2a), (b), for various levels of bulk 4 concentration ratio (C_H/C_L) , (c) and (d) are the corresponding variation of I_- . (a) and (c): 5 a = 0.5 nm; (b) and (d): $f = 0.5 nm^{-1}$.

1 7. Influence of *f* and *a* on ionic flux

3 Fig. S6. Variation of $(J_{D,Na} + -J_{D,Cl})$ with f, (a), and H(=2a), (b), for various levels of 4 bulk concentration ratio (C_H/C_L) , (c) and (d) are the corresponding variation of 5 $(J_{D,Na} + -J_{D,Cl})$, (e) and (f) are the corresponding variation of $(J_{T,Na} + -J_{T,Cl})$. (a), (c), 6 and (e): a = 0.5 nm; (b), (d), and (f): $f = 0.5 nm^{-1}$.

3 8. Influence of various electrolytes

6 Fig. S7 Current-voltage (I-V) curve and power-voltage (P-V) curve for various electrolytes in

7 the case of a square waveform at $f = 2 \text{ nm}^{-1}$, a = 0.5 nm, and $\binom{C_{H, Cl}}{L, Cl} = 10$

10 References

11 1 Q. Ren, Q. Cui, K. Chen, J. Xie and P. Wang, *Desalination*, 2022, **535**, 115802.

- тт • -