Supplementary Information (SI) File for:

Experimental and Computational Study on the Influence of Cobalt Substitution on Structural, Impedance, Electronic, Magnetic, and Optical Properties of Pseudobrookite-structured Fe₂TiO₅

M. Naveed-Ul-Haq^{a,*}, Anum Shafiq^b, Layiq Zia^b, and Arif Mumtaz^b

^aDepartment of Physics, Rawalpindi Women University, 6th Road, Satellite Town, 46300, Rawalpindi, Pakistan.

^bDepartment of Physics, Quaid-i-Azam University Islamabad, Pakistan.

*Corresponding Authors,

Email: naveed.haq@f.rwu.edu.pk,

т	Fitting Parameters								
(°C)	Q ₁ (F.s ^{a-1})	a1	R ₁ (Ω)	Q ₂ (F.s ^{a-1})	a2	R₂ (Ω)	Q ₃ (F.s ^{a-1})	a ₃	R ₃ (Ω)
25	1.6 × 10 ⁻⁹	0.8	9490	1.15 × 10 ⁻⁹	0.99	$2.5 imes 10^6$	1.55 × 10 ⁻⁹	0.86	$9.5 imes 10^6$
40	6.5 × 10 ⁻⁹	0.73	4700	3.5 × 10 ⁻⁹	0.81	$3.9 imes 10^6$	1.1 × 10 ⁻⁹	0.97	$1.9 imes 10^5$
60	1.9 × 10 ⁻⁹	0.98	$1.43 imes 10^6$	25 × 10 ⁻⁹	0.64	$3.3 imes 10^5$	1.8 × 10 ⁻⁹	0.95	$8.8 imes 10^4$
80	8.3 × 10 ⁻⁹	0.77	$1.5 imes 10^{6}$	0.92 × 10 ⁻⁹	1	3.2×10^4	1.97 × 10 ⁻⁹	0.4	$574 imes 10^{6}$
100	11 × 10 ⁻⁹	0.75	$0.85 imes 10^6$	5.84 × 10 ⁻⁶	0.36	$3.5 imes 10^6$	0.9 × 10 ⁻⁹	1	1.2×10^4
120	4.5 × 10 ⁻⁹	0.98	$0.12 imes 10^6$	24 × 10 ⁻⁹	0.68	$2.3 imes 10^4$	9 × 10 ⁻⁹	0.88	$7.3 imes 10^4$
140	5.2 × 10 ⁻⁹	0.88	$8.5 imes 10^4$	32 × 10 ⁻⁹	0.95	$1.4 imes 10^4$	39 × 10 ⁻⁹	0.66	8046
160	0.03 × 10 ⁻⁹	0.6	170	7.1 × 10 ⁻⁹	0.8	2250	6.6 × 10 ⁻⁹	0.86	$4.8 imes 10^4$
180	4.2 × 10 ⁻⁹	0.91	2.3×10^4	4.3 × 10 ⁻⁹	1	1800	90 × 10 ⁻⁹	0.62	1650

Table S1: The Fitting parameters obtained from 3 circuit model as displayed in Figure 8 (a) for FeTi₂O₅.

	Fitting Parameters								
т (°С)	Q ₁ (F.s ^{a-} ¹)	R ₁ (Ω)	a 1	Q ₂ (F.s ^{a-1})	R ₂ (Ω)	a2	Q ₃ (F.s ^{a-1})	R₃ (Ω)	a ₃
25	10 × 10 ⁻⁹	1.0×10^6	0.8	6.7 × 10 ⁻⁹	9268	0.71	40 × 10 ⁻⁹	1.65×10^{5}	1
40	11 × 10 ⁻⁹	3.3 × 10 ⁵	0.84	19 × 10 ⁻⁹	1.17 × 10 ⁶	0.84	20 × 10 ⁻⁹	6953	0.65
60	9 × 10 ⁻⁹	6.8 × 10 ⁵	0.84	0.1 × 10 ⁻⁶	1.07 × 10 ⁴	0.83	19 × 10 ⁻⁹	3590	0.66
80	1.2 × 10 ⁻ 6	13×10^6	1	6.4 × 10 ⁻⁹	$4.3 imes 10^5$	0.89	8.1×10 ⁻⁶	$78 imes 10^6$	0.3
100	4.3 × 10 ⁻ 7	1497	0.48	7.6 × 10 ⁻⁹	2.2 × 10 ⁵	1	14 × 10 ⁻⁹	1.5 × 10 ⁵	0.82
120	9.6 × 10 ⁻ 9	5165	0.98	1.0 × 10 ⁻⁷	1064	0.58	5.4 × 10 ⁻⁹	1.6 × 10 ⁵	0.90
140	10 × 10 ⁻⁹	$3 imes 10^4$	1	7 × 10 ⁻⁹	$6.5 imes 10^5$	0.88	41×10^{-9}	580	0.64
160	5 × 10 ⁻⁹	5.5 × 10 ⁵	0.9	2.2 × 10 ⁻⁶	437	0.39	1.32 × 10 ⁻ 6	12	1
180	1.5 × 10 ⁻ 4	202	0.05	9.4 × 10 ⁻⁹	$1.4 imes 10^4$	0.88	5.6 × 10 ⁻⁹	1.4 × 10 ⁻⁴	1

Table S2: The Fitting parameters obtained from 3 circuit model as displayed in Figure 8 (a) for $FeTi_2O_5$.

Species	lon	Hirschfeld Charge (e)	Spin ($\frac{\hbar}{2}$)
0	1	-0.3	-0.13
0	2	-0.31	0.01
0	3	-0.3	0.13
0	4	-0.31	-0.01
0	5	-0.31	0
0	6	-0.3	-0.13
0	7	-0.31	0.01
0	8	-0.3	0.13
0	9	-0.31	-0.01
0	10	-0.31	0
Ti	1	0.53	0
Ti	2	0.53	0
Fe	1	0.5	4.06
Fe	2	0.5	-4.06
Fe	3	0.5	4.06
Fe	4	0.5	-4.06

Table S3: The Hirschfeld Charge and Spin Analysis of $Fe_{2-x}Co_xTiO_5$ (x = 0) in supercell configuration consisting of 2 formula units.

Table S4: The Hirschfeld Charge and Spin Analysis of $Fe_{2-x}Co_xTiO_5$ (x = 0.1) in supercell configuration consisting of 10 formula units.

Species	lon	Hirschfeld Charge (e)	Spin (<u>^</u>)
0	1	-0.31	-0.12
0	2	-0.31	0.01
0	3	-0.3	0.09
0	4	-0.31	0.23
0	5	-0.31	0.12
0	6	-0.31	-0.01
0	7	-0.3	-0.09
0	8	-0.31	-0.24
0	9	-0.31	0
0	10	-0.31	0
0	11	-0.3	-0.09
0	12	-0.31	-0.23
0	13	-0.3	-0.09
0	14	-0.31	-0.23
0	15	-0.3	0.09
0	16	-0.31	0.23
0	17	-0.3	0.09
0	18	-0.31	0.23

0	19	-0.31	0
0	20	-0.31	0
0	21	-0.3	0.09
0	22	-0.31	0.23
0	23	-0.3	0.07
0	24	-0.3	0.22
0	25	-0.28	-0.03
0	26	-0.31	-0.22
0	27	-0.3	-0.09
0	28	-0.31	-0.23
0	29	-0.3	-0.01
0	30	-0.31	0
0	31	-0.3	-0.09
0	32	-0.31	-0.23
0	33	-0.3	-0.1
0	34	-0.31	-0.23
0	35	-0.28	0.15
0	36	-0.3	0.22
0	37	-0.3	0.1
0	38	-0.31	0.23
0	39	-0.31	0
0	40	-0.31	-0.01
0	41	-0.3	0.09
0	42	-0.31	0.24
0	43	-0.31	-0.12
0	44	-0.31	0
0	45	-0.3	-0.1
0	46	-0.31	-0.23
0	47	-0.31	0.12
0	48	-0.31	-0.01
0	49	-0.31	0
0	50	-0.31	0
Ті	1	0.53	0
Ti	2	0.53	0
Ті	3	0.53	0
Ті	4	0.53	0
Ті	5	0.53	0
Ті	6	0.53	0
Ті	7	0.52	-0.01
Ті	8	0.53	0
Ті	9	0.53	0

Ті	10	0.53	0
Fe	1	0.5	4.02
Fe	2	0.5	4.07
Fe	3	0.5	-4.02
Fe	4	0.5	-4.08
Fe	5	0.5	-4.04
Fe	6	0.5	-4.03
Fe	7	0.5	4.04
Fe	8	0.5	4.04
Fe	9	0.5	4.04
Fe	10	0.5	-4.04
Fe	11	0.5	-4.04
Fe	12	0.5	-4.04
Fe	13	0.5	-4.03
Fe	14	0.5	4.03
Fe	15	0.5	4.04
Fe	16	0.5	4.07
Fe	17	0.5	4.02
Fe	18	0.5	-4.08
Fe	19	0.5	-4.02
Со	20	0.43	2.97
