## **Supplementary Material**

## Size-Tunable Energy Gap of Hydrogen-Terminated Biphenylene Segments

Yirui Lu,<sup>1</sup> Lei Yan,<sup>1,\*</sup> Huixia Fu,<sup>2,\*</sup> Yuhui Song,<sup>1</sup> Yifei Cao,<sup>1</sup> Sen Li,<sup>1</sup> Ruhai Du,<sup>1</sup> Jinping Li,<sup>1</sup> Zhengkun Fu,<sup>1</sup> Zhenglong Zhang<sup>1,\*</sup>

<sup>1</sup>School of physics and information technology, Shaanxi Normal University, Shaanxi, Xi'an 710119, China <sup>2</sup>Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing 401331, China



**Fig. S1** Band structure and density of states (DOS) of one-dimensional (a) AC-BP and (b) ZZ-BP with the width of two benzene rings as well as (c) AC-BP with the width of five benzene rings. (d) DOS of two-dimensional BP sheet. The unit cells are inserted in each figure. The valence bands are plotted with black lines and the conduction bands are plotted in red. 500 k-points are used in the calculations.



**Fig. S2** (a) Structure of unit cell of two-dimensional BP network. (b)-(e) Bond length variation of B1 and B2 for AC-BP and ZZ-BP with N= 3, 5, 7, 9, respectively.



**Fig. S3** Energy gap of (a)  $N \times N$  and (b)  $N \times 10$  BP structures ( $N=3\sim10$ ).



**Fig. S4** Electron density distribution at HOMO and LUMO state of  $N \times N$  BP structures with N=3, 5, 7, 8 and 9. The isosurface value is 0.0005 e/Bohr<sup>3</sup>.



Fig. S5 (a) Relationship between the length and  $N_H/N_C$  and the energy gap for Armchair 2\*N. (b) Relationship between the length and width and  $N_H/N_C$  for BP nano-segments.