Supplementary Material regarding the article

Anion dynamics and motional decoupling in a glycerol-choline chloride deep eutectic solvent studied by one- and two-dimensional ³⁵Cl NMR

Yannik Hinz, Joachim Beerwerth and Roland Böhmer Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany

Fig. S1: Low-temperature spectrum measured for glyceline at 39.2 MHz (black solid line) with a Czjzek fit resulting in an apodization of 9.1 kHz (dash-dotted blue line) and a Czjzek fit (describing the central part better) using a fixed apodization of 2 kHz (dashed red line). The corresponding standard deviations σ_{Cz} are 0.75 and 0.85 MHz, respectively. The Czjzek fit with the apodization of 2 kHz is shown as dashed line in Figure 1 of the main article.

Fig. S2: For a range of Cole-Davidson parameters β_{CD} , this plot shows the correlation time dependence of T_{2c} as calculated according to eqn (8). This plot allows one to estimate the correlation time corresponding to the position of the local minimum and maximum of T_{2c} for a given β_{CD} . For the present analysis the curve for $\beta_{CD} = 0.38$ is used.

Fig. S3: Temperature dependent final-state correlation Z obtained from the analysis of the 35 Cl stimulated-echo measurements of glyceline. The line is drawn to guide the eye.

Fig. S4: Temperature dependent cos-cos ²H echo amplitudes measured for (a) glyceline-d₄ and (b) glyceline-d₅ at an evolution time of 20 μ s. Analogous to Eq. (11), the lines are fits to the normalized echo amplitudes $S_2(t_m) = F_2(t_m)M_z(t_m)$. The arrows indicate the 1/e decay times of the independently measured longitudinal magnetization recoveries. For glyceline-d₄ (deuterated at choline's alkyl chain) the average Kohlrausch exponent is $\beta_{2,Ch} = 0.34$. For glyceline-d₅ (deuterated at glycerol's carbon atoms) the average Kohlrausch exponent is $\beta_{2,Ghy} = 0.40$.