Electronic supplementary information

Intramolecular Locking and Coumarin Insertion: A Stepwise Approach for TADF Design

S. Paredis,^{a,b,c} T. Cardeynaels,^{a,b,c,d} S. Brebels,^{a,b,c} J. Deckers,^{a,b,c} S. Kuila,^e A. Lathouwers,^{a,b,c} M. Van Landeghem,^{b,c,f} K. Vandewal,^{b,c,f} A. Danos,^{*e} A. P. Monkman,^e B. Champagne^d and W. Maes^{*a,b,c}

^a Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan 1, 3590 Diepenbeek, Belgium; E-mail: wouter.maes@uhasselt.be ^b IMOMEC Division, IMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium

^c Energyville, Thorpark, 3600 Genk, Belgium

^d University of Namur, Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000 Namur, Belgium

^e Durham University, Department of Physics, OEM group, South Road, Durham DH1 3LE, United Kingdom; E-mail: andrew.danos@durham.ac.uk

^f Hasselt University, Institute for Materials Research (IMO-IMOMEC), Organic Opto-Electronics (OOE), Wetenschapspark 1, 3590 Diepenbeek, Belgium

1. Materials and methods

All reagents and chemicals were obtained from commercial sources and used without further purification. Dry solvents were obtained from an MBraun solvent purification system (MB SPS-800) equipped with alumina columns. Preparative (recycling) size exclusion chromatography (SEC) was performed on a JAI LC-9110 NEXT system equipped with JAIGEL 1H and 2H columns (eluent chloroform, flow rate 3.5 mL min⁻¹). Proton and carbon nuclear magnetic resonance (¹H and ¹³C NMR) spectra were obtained on a Jeol spectrometer operating at 400 MHz for ¹H (100 MHz for ¹³C). Chemical shifts (δ) are given in ppm relative to CDCl₃ (δ = 7.26 ppm for ¹H NMR, δ = 77.16 ppm for ¹³C NMR). Matrix-assisted laser desorption/ionization -time-of-flight (MALDI-ToF) mass spectra were recorded on a Bruker Daltonics UltrafleXtreme ToF/ToF. Approximately 10 µL of the matrix solution (25 mg mL⁻¹ trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DTCB) in chloroform) was mixed with 3 µL of the analyte solution (10 mg mL⁻¹ in chloroform), after which 0.5 µL of the resulting solution was spotted onto an MTP Anchorchip 600/384 MALDI plate.

Electronic absorption spectra of the small molecule chromophores in solution were recorded on a Varian Cary 5000 UV-Vis-NIR spectrophotometer from Agilent Technologies. Corrected steady-state excitation and emission spectra of the chromophore solutions were recorded on a Horiba-Jobin Yvon Fluorolog-3 spectrofluorometer equipped with a 450 W Xe lamp as the light source, with an excitation wavelength (λ_{exc}) depending on the fluorescence quantum yield standard used and a slit width of 2 nm. Freshly prepared samples in 1 cm quartz cells were used to perform all UV-Vis-NIR absorption and fluorescence measurements. The fluorescence measurements were done under a right-angle arrangement. The standard uncertainty (square root of the variance) on the absorption and emission maxima is approximately 1 nm. Spectroscopic measurements under normal atmosphere were done in non-degassed spectroscopic grade solvents at 20 °C. Inert atmosphere was created by three consecutive freeze-pump-thaw cycles.

For the determination of the relative fluorescence quantum yields (Φ_f) in toluene, dilute solutions with an absorbance around 0.1 at the excitation wavelength were used. Quinine (λ_{exc} = 347 nm, ϕ_f = 0.58 in 0.1 M H_2SO_4 solution) was used as a standard to determine the fluorescence quantum yields.¹ The fluorescence quantum yield of the tested compound ($\Phi_{f,x}$) was calculated using Equation (1), in which $\Phi_{f,st}$ is the fluorescence quantum yield of the standard, F_x and F_{st} are the integrated fluorescence of the test compound and the standard, A_x and A_{st} are the absorbance of the test compound and the standard at the excitation wavelength, and n_x and n_{st} are the refractive indices of the solvents in which the test compound and the standard were dissolved, respectively.

$$\Phi_{x} = \Phi_{st} \frac{F_{x} (1 - 10^{-A_{st}}) n_{x}^{2}}{F_{st} (1 - 10^{-A_{x}}) n_{st}^{2}}$$
(1)

1,3-Diphenylisobenzofuran (1,3-DPBF) was used as a singlet oxygen (${}^{1}O_{2}$) scavenger to determine the singlet oxygen quantum yields (ϕ_{Δ}). The ${}^{1}O_{2}$ production was monitored by following the absorbance of 1,3-DPBF at 414 nm upon excitation of the respective chromophore at 325 nm using a single LED325W2 from Thorlabs (λ_{exc} = 325±5 nm, fwhm = 11 nm, P = 1.7 mW). To determine $\Phi_{\Delta t}$ a relative method was used according to Equation (2). Here, x and st represent the sample and the standard, while Φ , A, m, and n represent the singlet oxygen quantum yield, the absorbance at the excitation wavelength (λ_{exc} = 325 nm), the slope of the decrease in absorbance of 1,3-DPBF over

F. Wilkinson, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1993, 22, 113-262.

^{3.} 4.

M. Trkovnik, V. Kalaj, D. Kitan, Org. Prep. Proced. Int., 1987, 19, 450-455. T. Huang, D. Liu, J. Jiang and W. Jiang, Chem. Eur. J., 2019, 25, 10926-10937.

time, and the refractive index of the solvent used for the measurement, respectively. Optically matched solutions with an absorbance around 0.6 at 414 nm and 0.3 at 325 nm were used. Coronene was used as the standard ($\phi_{\Delta} = 0.90$ in spectrograde toluene).² The solutions were continuously stirred during all measurements using a Cimarec magnetic stirrer.

$$\Phi_{x} = \Phi_{st} \left(\frac{1 - 10^{-A_{st}}}{1 - 10^{-A_{x}}} \right) \left(\frac{m_{x}}{m_{st}} \right) \left(\frac{n_{x}}{n_{st}} \right)^{2}$$
(2)

Zeonex films were prepared via drop-casting using a mixture of the emitter and host (zeonex) in toluene at 1 w/w%. The initial solution concentrations were 100 mg mL⁻¹ of zeonex and 1 mg mL⁻¹ of emissive material, combined in equal volumes. The films were drop-casted onto a quartz substrate at 65 °C to facilitate evaporation of the solvent. Absorption and emission spectra of the films were collected using a UV-3600 double beam spectrophotometer (Shimadzu) and a Fluoromax fluorimeter (Jobin Yvon). Time-resolved photoluminescence spectra and decays were recorded using a nanosecond gated spectrograph-coupled iCCD (Stanford) camera (time resolution of 500 ps) using an Nd:YAG laser (EKSPLA) emitting at 355 nm with a pulse width of 200 ps under vacuum. Photoluminescence quantum yields in film were determined using a calibrated integrating sphere (Horiba Quanta-Phi) fibre-coupled to a spectrofluorometer (Horiba Fluorolog) as excitation source and as detection system. For the measurements in inert atmosphere, the sphere was flushed with a stream of dry nitrogen for at least 30 min to prevent oxygen quenching of triplets.

Materials synthesis

Coumarin precursors (1) and (2) were synthesized according to literature procedures.³

2,3-bis(4-bromophenyl)quinoxaline (3)⁴

General procedure 1: 1,2-Bis(4-bromophenyl)ethane-1,2-dione (0.500 g, 1.36 mmol) and benzene-1,2-diamine (150 μ L, 1.36 mmol) were dissolved in glacial acetic acid (15 mL) and the mixture was stirred at 125 °C for 16 h. Afterwards, the mixture was cooled down to room temperature and poured into water. The formed precipitate was filtered off, washed with water, and dried under vacuum, yielding a white solid (0.571 g, 96%).

¹H NMR (400 MHz, CDCl₃): δ = 8.18 – 8.13 (m, 2H), 7.83 – 7.77 (m, 2H), 7.51 (d, *J* = 8.5 Hz, 4H), 7.40 (d, *J* = 8.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 152.1, 141.4, 137.8, 131.8, 131.6, 130.6, 129.3, 123.9. MS (MALDI-ToF) Calcd. for C₂₀H₁₂Br₂N₂ [M]⁺: *m/z* 437.9, found: 438.0.

2,3-bis(4-bromophenyl)benzo[f]quinoxaline (4)

Synthesis according to general procedure 1: 1,2-bis(4-bromophenyl)ethane-1,2-dione (0.235 g, 0.63 mmol), naphthalene-1,2-diamine (0.100 g, 0.63 mmol), glacial acetic acid (10 mL); pale yellow solid (0.171 g, 55%).

¹H NMR (400 MHz, CDCl₃): δ = 9.31 – 9.20 (m, 1H), 8.05 (d, *J* = 9.1 Hz, 1H), 7.98 (d, *J* = 9.1 Hz, 1H), 7.96 – 7.92 (m, 1H), 7.79 – 7.72 (m, 2H), 7.54 – 7.50 (m, 6H), 7.46 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 151.1, 149.8, 140.8, 139.7, 138.0, 133.6, 132.3, 131.9, 131.7, 131.6, 130.8, 129.2, 128.2, 127.8, 126.6, 124.8, 123.69, 123.65. MS (MALDI-ToF) Calcd. for C₂₄H₁₄Br₂N₂ [M]⁺: *m/z* 488.0, found: 488.0.

2,3-bis(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)quinoxaline (**Qx-Ph-DMAC**)

General procedure 2 (Buchwald-Hartwig cross-coupling): 2,3-Bis(4-bromophenyl)quinoxaline (0.118 g, 398 µmol), 9,9-dimethyl-9,10-dihydroacridine (79.2 mg, 432 µmol), palladium(II) acetate (8.9 mg, 40 µmol), tri-*tert*-butylphosphonium tetrafluoroborate (16.1 mg, 80 µmol), and sodium *tert*-butoxide (76.6 mg, 797 µmol) were dissolved in dry toluene (12 mL) under argon atmosphere. The mixture was heated to reflux for 16 h while stirring and then cooled down to room temperature and concentrated under reduced pressure. The crude product was purified by column chromatography (silica) with CH_2Cl_2 /petroleum ether (v/v = 60/40) as the eluent. **Qx-Ph-DMAC** was further purified using preparative (recycling) SEC and was obtained as a yellow solid (0.116 g, 75%).

¹H NMR (400 MHz, CDCl₃): δ = 8.33 - 8.27 (m, 2H), 7.92 - 7.87 (m, 2H), 7.86 (d, *J* = 8.3 Hz, 4H), 7.45 (dd, *J* = 7.6, 1.7 Hz, 4H), 7.41 (d, *J* = 8.3 Hz, 4H), 6.92 - 6.81 (m, 8H), 6.34 (dd, *J* = 8.0, 1.4 Hz, 4H), 1.69 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ = 153.1, 142.2, 141.6, 140.8, 138.9, 132.6, 131.5, 130.7, 130.3, 129.5, 126.7, 125.2, 120.9, 114.1, 36.1, 31.0. MS (MALDI-ToF) Calcd. for C₅₀H₄₀N₄ [M]⁺: *m/z* 696.3, found: 696.4.

2,3-bis(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)benzo[f]quinoxaline (**BQx-Ph-DMAC**)

Synthesis according to general procedure 2: 2,3-bis(4-bromophenyl)benzo[*f*]quinoxaline (0.220 g, 448 μ mol), 9,9-dimethyl-9,10-dihydroacridine (0.205 g, 987 μ mol), palladium(II) acetate (10 mg, 45 μ mol), tri-*tert*-butylphosphonium tetrafluoroborate (26 mg, 90 μ mol), sodium *tert*-butoxide (108 mg, 1.12 mmol), dry toluene (12 mL), eluent CH₂Cl₂/petroleum ether (v/v = 60/40); yellow solid (19 mg, 6%).

¹H NMR (400 MHz, CDCl₃): δ = 9.47 - 9.39 (m, 1H), 8.16 - 8.14 (m, 2H), 8.07 - 7.97 (m, 3H), 7.93 (d, *J* = 8.3 Hz, 2H), 7.88 - 7.78 (m, 2H), 7.52 - 7.40 (m, 8H), 6.96 - 6.78 (m, 8H), 6.46 - 6.33 (m, 4H), 1.71 (2 x s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ = 152.2, 150.9, 142.0, 141.0, 140.9, 140.8, 140.0, 139.2, 139.1, 133.7, 133.0, 132.7, 132.5, 131.6, 131.3, 130.9, 130.4, 130.3, 129.3, 128.3, 127.9, 126.7, 126.6, 125.2, 125.0, 120.92, 120.89, 114.2, 36.2, 31.1, 31.0. MS (MALDI-ToF) Calcd. for C₅₄H₄₂N₄ [M]⁺: *m/z* 746.3, found: 746.4.

2,3-bis(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)-5H-chromeno[3,4-b]pyrazin-5-one (ChromPy-Ph-DMAC)

Synthesis according to general procedure 2: 2,3-bis(4-bromophenyl)-5*H*-chromeno[3,4-*b*]pyrazin-5-one (0.200 g, 395 µmol), 9,9-dimethyl-9,10-dihydroacridine (0.181 g, 866 µmol), palladium(II) acetate (9 mg, 40 µmol), tri-*tert*-butylphosphonium tetrafluoroborate (23 mg, 79 µmol), sodium *tert*-butoxide (95 mg, 988 mmol), dry toluene (12 mL), eluent CH_2Cl_2 /petroleum ether (v/v = 70/30); orange solid (139 mg, 46%).

¹H NMR (400 MHz, CDCl₃): δ = 8.74 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.97 (d, *J* = 8.5 Hz, 2H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.74 – 7.68 (m, 1H), 7.55 – 7.49 (m, 2H), 7.49 – 7.43 (m, 6H), 7.41 (d, *J* = 8.4 Hz, 2H), 6.98 – 6.82 (m, 8H), 6.39 – 6.29 (m, 4H), 1.69 (2 x s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.3, 157.5, 154.2, 152.8, 146.1, 143.6, 142.9, 140.7, 137.3, 137.1, 133.4, 132.8, 132.7, 131.7, 131.5, 131.4, 130.8, 130.4, 126.7, 125.5, 125.4, 125.3, 121.2, 121.0, 118.3, 117.7, 114.3, 114.2, 36.21, 36.15, 31.1, 31.0. MS (MALDI-TOF) Calcd. for C₅₃H₄₀N₄O₂ [M]⁺: *m/z* 764.3, found: 764.5.

10,13-bis(9,9-dimethylacridin-10(9H)-yl)-6H-dibenzo[f,h]chromeno[3,4-b]quinoxalin-6-one

(DBChromQx-DMAC)

Synthesis according to general procedure 2: 10,13-dibromo-6*H*-dibenzo[*f*,*h*]chromeno[3,4*b*]quinoxalin-6-one (200 mg, 395 µmol), 9,9-dimethyl-9,10-dihydroacridine (186 mg, 869 µmol), palladium(II) acetate (9 mg, 40 µmol), tri-*tert*-butylphosphonium tetrafluoroborate (23 mg, 79 µmol), sodium *tert*-butoxide (95 mg, 988 mmol), dry toluene (12 mL), eluent CH₂Cl₂/petroleum ether (v/v = 70/30); red solid (178 mg, 59%).

¹H NMR (400 MHz, CDCl₃): δ = 9.74 (d, *J* = 8.6 Hz, 1H), 9.72 (d, *J* = 8.6 Hz, 1H), 8.90 (dd, *J* = 7.9, 1.6 Hz, 1H), 8.50 (d, *J* = 1.9 Hz, 1H), 8.46 (d, *J* = 1.9 Hz, 1H), 7.84 – 7.77 (m, 2H), 7.73 – 7.65 (m, 1H), 7.57 – 7.48 (m, 2H), 7.48 – 7.41 (m, 4H), 6.95 – 6.82 (m, 8H), 6.33 – 6.18 (m, 4H), 1.70 (2 x s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.2, 152.7, 146.4, 145.2, 145.0, 144.3, 142.8, 140.7, 140.6, 135.7, 134.0, 133.4, 133.1, 132.4, 132.0, 130.4, 130.34, 130.26, 130.0, 129.2, 128.8, 126.6, 126.3, 126.2, 125.8, 125.5, 125.4, 121.2, 121.1, 118.9, 117.8, 114.2, 114.1, 36.19, 36.15, 31.8, 31.7. MS (MALDI-ToF) Calcd. for C₅₃H₃₈N₄O₂ [M]+: *m/z* 762.3, found: 762.3.

2. TDDFT calculations

Table S1: Charge-transfer distance (d_{CT}) and change in dipole moment ($\Delta\mu$, excited state dipole – ground state dipole) accompanying the $S_0 \rightarrow S_x$ and $S_0 \rightarrow T_x$ (x = 1,2) transitions in cyclohexane, as determined with TDDFT-TDA and a modified LC-BLYP (ω = 0.17 bohr⁻¹) exchange correlation functional.

Compound	S ₀ -	$\rightarrow S_1$	S ₀ -	$\rightarrow S_2$	S ₀ -	→ T ₁	S ₀ -	→ T ₂
	d _{ct} (Å)	Δμ (D)	<i>d_{ст}</i> (Å)	<i>Δμ</i> (D)	l d _{ct} I (Å) I	<i>Δμ</i> (D)	l <i>d_{ct}</i> I (Å) I	<i>Δμ</i> (D)
Qx-Ph-DMAC	3.54	20.00	3.37	18.68	0.01	0.03	1.23	2.46
BQx-Ph-DMAC	3.35	19.95	3.44	20.61	0.55	1.23	0.06	0.14
ChromPy-Ph-DMAC	3.51	21.84	3.53	21.64	0.07	0.18	0.60	1.63
DBChromQx-DMAC	3.95	24.51	4.24	26.40	0.15	0.34	I 1.73	6.19

Table S2: TDDFT results for the vertical first singlet excitation energy and the corresponding oscillator strength (f), and the first vertical triplet excitation energies, as determined with TDDFT-TDA and a modified LC-BLYP ($\omega = 0.17$ bohr⁻¹) exchange correlation functional.

Compound	S_1	f_{S_1}	T_1	$\Delta E_{S_1 - T_1}$
	(ev)	(ev)		(ev)
Qx-Ph-DMAC	3.34	0.002	2.87	0.47
BQx-Ph-DMAC	3.37	0.004	2.97	0.40
ChromPy-Ph-DMAC	3.11	0.001	2.99	0.12
DBChromQx-DMAC	2.85	<0.001	2.77	0.08

Table S3: TDDFT results for the vertical excitation energy of S_2 , S_3 and S_4 , and the corresponding oscillator strength (*f*), and the vertical triplet excitation energies of T_2 , T_3 , T_4 and T_5 , as determined with TDDFT-TDA and a modified LC-BLYP ($\omega = 0.17$ bohr⁻¹) exchange correlation functional.

Compound	S ₂ (eV)	f_{S_2}	S3 (eV)	f_{S_3}	S ₄ (eV)	f_{S_4}	T ₂ (eV)	T ₃ (eV)	T ₄ (eV)	7 ₅ (eV)
Qx-Ph-DMAC	3.35	0.001	3.40	0.003	3.71	0.002	3.25	3.25	3.33	3.35
BQx-Ph-DMAC	3.38	0.001	3.54	0.007	3.67	0.448	3.04	3.25	3.33	3.35
ChromPy-Ph-DMAC	3.21	0.006	3.44	0.002	3.52	0.006	3.05	3.10	3.16	3.20
DBChromQx-DMAC	2.93	<0.001	3.24	>0.001	3.31	0.002	2.79	2.86	2.93	3.09

Table S4: Charge-transfer distance (d_{CT}) and change in dipole moment ($\Delta \mu$, excited state dipole – ground state dipole) accompanying the $S_0 \rightarrow T_x$ (x = 3,4,5) transitions in cyclohexane, as determined with TDDFT-TDA and a modified LC-BLYP ($\omega = 0.17$ bohr⁻¹) exchange correlation functional.

Compound	$S_0 \to T_3$		$S_0 \to T_4$		$S_0 \to T_5$	
	d_{CT} (Å)	<i>Δμ</i> (D)	d_{CT} (Å)	<i>Δμ</i> (D)	<i>d_{ст}</i> (Å)	<i>Δμ</i> (D)
Qx-Ph-CTDO	1.632	3.784	3.397	16.543	3.273	16.263
BQx-Ph-CTDO	0.308	0.447	3.187	16.367	3.237	16.628
ChromPy-Ph-DMAC	3.403	19.177	2.402	7.046	3.082	13.372
DBChromQx-DMAC	3.613	18.506	4.151	24.423	1.270	1.765

Figure S1: Ground – excited state electron density differences for the singlet and triplet excited states of Qx-Ph-DMAC, BQx-Ph-DMAC, ChromPy-Ph-DMAC, and DBChromQx-DMAC. Purple areas indicate increased electron density, while cyan areas point to decrease electron density (isosurface value = 0.0004 a.u. for all densities).

3. Simulated UV-Vis absorption spectra

Figure S2: Simulated UV-Vis absorption spectra derived from the TD-DFT results for the optimized geometries by fitting the vertical excitation energies with a Gaussian fit and employing a full-width at half maximum of 0.3 eV for each excitation. The vertical lines indicate the specific excitation energies and their relative size is indicative of the oscillator strength accompanying the transition.

4. Photographs of the fluorescent dyes in zeonex

Figure S3: Photographs of the dyes doped in a 1 w/w% zeonex film upon UV-excitation (λ_{exc} = 365 nm).

5. Time-resolved emission spectra in zeonex

Figure S4: Snapshots of the emission at various time scales for Qx-Ph-DMAC, BQx-Ph-DMAC, ChromPy-Ph-DMAC, and DBChromQx-DMAC in zeonex at room temperature (left) and at 80 K (right).

Figure S5: Snapshots of the emission at longer time scales for **BQx-Ph-DMAC** in zeonex at room temperature (blue, 0.8 ns delay time; black line; 40 ms delay time) and at 80 K (red; 80 ms delay time).

6. Singlet oxygen generation in toluene

Figure S6: Relative decrease in absorbance of 1,3-DPBF at 414 nm under continuous irradiation using a single 325 nm LED in the presence of the respective dyad in toluene. Coronene was used as a standard ($\phi_{\Delta} = 0.90$ in toluene).

7. Photoluminescence quantum yield in toluene

Figure S7: Emission spectra for Qx-Ph-DMAC, BQx-Ph-DMAC, ChromPy-Ph-DMAC, and DBChromQx-DMAC in air (dashed lines) and in inert atmosphere (solid lines).

8. Determination of krISC

Figure S8: Experimental decay plot of the total emission of ChromPy-Ph-DMAC (left) and DBChromQx-DMAC (right) with the resulting theoretical fitting.

9. NMR spectra

Figure S9: ¹H NMR spectrum of 2,3-bis(4-bromophenyl)quinoxaline (3) in CDCl₃.

Figure S10: ¹³C NMR spectrum of 2,3-bis(4-bromophenyl)quinoxaline (3) in CDCl₃.

 1.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.

 ppm

 Figure S11: ¹H NMR spectrum of 2,3-bis(4-bromophenyl)benzo[f]quinoxaline (4) in CDCl₃.

Figure S12: ¹³C NMR spectrum of 2,3-bis(4-bromophenyl)benzo[f]quinoxaline (4) in CDCl₃.

 1.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.

 ppm

 Figure S13: 1H NMR spectrum of 2,3-bis(4-bromophenyl)-5H-chromeno[3,4-b]pyrazin-5-one (5) in CDCl3.

CDCl₃.

Figure S20: ¹³C NMR spectrum of 2,3-bis(4-(9,9-dimethylacridin-10(9*H*)-yl)phenyl)-5*H*-chromeno[3,4-*b*]pyrazin-5-one (ChromPy-Ph-DMAC) in CDCl₃.

in CDCl₃.

Figure S22: ¹³C NMR spectrum of 10,13-bis(9,9-dimethylacridin-10(9*H*)-yl)-6H-dibenzo[*f*,*h*]chromeno[3,4-*b*]quinoxalin-6-one (DBChromQx-**DMAC**) in $CDCI_3$.

10. Coordinates of optimized geometries

Qx-Ph-DMAC

С	8.90695	-0.67387	0.20933
C	7.72928	-1.34124	0.41034
C	6.50126	-0.68018	0.19965
c	7.72928	1.34125	-0.41035
C	8.90695	0.67388	-0.20934
Ν	5.33799	-1.36188	0.33920
N	5.33799	1.36189	-0.33919
C	4.22288	-0./0854	0.13511
C	4.22288	-1 46264	-0.13511
c	2.04072	-1.34584	-0.88562
Č	2.61289	2.24540	-1.26809
С	2.94837	1.46264	-0.16727
С	2.61290	-2.24540	1.26809
C	1.35275	-2.81976	1.36040
C	0.43231	-2.64169	0.33642
C	1.35274	2.81975	-1.36039
č	0.43231	2.64169	-0.33641
С	0.79620	1.94164	0.80727
С	2.04072	1.34584	0.88563
C	-3.24663	2.58793	-0.84117
C N	-1.89241	2.23/63	-0.90622
C	-1 22220	4 39777	0.02566
c	-2.55663	4.81758	0.10442
C	-3.72430	3.91831	-0.27664
С	-4.18481	1.65482	-1.27736
C	-3.82899	0.40893	-1.76238
C	-2.48500	0.07995	-1.83056
C	-1.52//6	0.98365	-1.41329
c	-0.48560	6 52693	0.43000
č	-1.80061	6.95819	0.98979
С	-2.80881	6.09944	0.58828
С	-4.55798	3.64287	0.98411
C	-4.59224	4.62924	-1.32340
C	-2.55663	-4.81/5/	-0.10444
N	-0.90176	-3 12664	0.02307
C	-1.89241	-2.23764	0.90623
С	-3.24663	-2.58793	0.84118
С	-3.72430	-3.91831	0.27664
C	-2.80881	-6.09943	-0.58831
C	-1.80061	-6.95817	-0.98984
C	-0.46560	-0.52091	-0.91103
c	-1.52776	-0.98366	1.41331
Č	-2.48500	-0.07995	1.83057
С	-3.82899	-0.40894	1.76239
С	-4.18480	-1.65482	1.27737
C	-4.59222	-4.62925	1.32341
Ч	-4.55799 9.85474	-3.04207	-0.96409
н	7.69743	-2.38327	0.71896
н	7.69743	2.38327	-0.71896
Н	9.85424	1.18388	-0.36720
Н	2.30463	-0.76213	-1.76590
Н	3.33597	2.36331	-2.07254
п	3.33598	-2.30331	2.07254
н	0.07549	-1 84374	-1 61747
н	1.05754	3.38918	-2.23952
Н	0.07549	1.84374	1.61749
Н	2.30463	0.76213	1.76590
Н	-5.24232	1.90669	-1.22025
Н	-4.592/6	-0.29//5	-2.0/848
п Н	-2.1/39/ -0 47876	-0.09593 0 70350	-2.20341 -1 25804
Н	0.83556	4.93511	0.38007
Н	0.32910	7.17707	1.22251
Н	-2.04096	7.95062	1.36238
Н	-3.84020	6.43941	0.66243
H	-3.95249	3.13065	1./4185
л Н	-4.93342 -5 47226	4.5/192 3 00806	1.42/84 0.76137
H	-5.45640	4.02081	-1.61010

Н	-4.98040	5.58152	-0.94676
Н	-4.01268	4.83716	-2.22964
Н	-3.84020	-6.43940	-0.66247
Н	-2.04096	-7.95059	-1.36244
н	0.32910	-7.17705	-1.22256
н	0.83556	-4.93510	-0.38008
н	-0.47825	-0.70359	1,45807
Н	-2.17597	0.89592	2.20344
н	-4.59276	0.29774	2.07849
н	-5 24232	-1 90669	1 22026
н	-4 01265	-4 83716	2 22965
н	-5 45639	-4 02083	1 61012
н	-4 98037	-5 58154	0 94677
н	-5 42337	-3 00806	-0.76134
	2 05252	2 12065	1 7/10/
	-3.95252	-3.13005	-1./4104
	-4.95544	-4.3/192	-1.42/02
DQX-P	n-DMAC		
С	8.28144	-1.06928	0.07373
С	7.23617	-0.14459	-0.15355
Ċ	5.87410	-0.58505	0.01481
Ċ	5.60893	-1.92325	0.38124
č	6 68949	-2 82426	0.61733
c	7 96865	-2 40945	0.017.00
c	9 61188	-0 64539	-0.08853
ĉ	0.001100	0.04555	-0.00033
Ċ	9.09039	1 5 6 9 2	-0.43943
Č	0.00000	1.30062	
C	7.54724	1.1/190	-0.52601
IN N	4.86776	0.28997	-0.14464
N	4.34492	-2.37690	0.47545
C	3.63443	-0.14360	0.00993
С	3.36628	-1.52568	0.25285
С	2.52850	0.83909	-0.05405
С	2.37435	1.66793	-1.16165
С	1.47491	-2.75192	1.32804
С	1.97670	-2.03704	0.24442
С	1.58465	0.89427	0.97172
С	0.47527	1.71079	0.86044
Ċ	0.28144	2.46688	-0.28909
Ĉ	1 24649	2 46718	-1 28712
c	0 12846	-3 08382	1 38428
c	-0 71752	-2 7200/	0 3/188
ĉ	0.71732	2.72334	0.34100
C	1 1 2 2 9 0	-2.10197	-0.70510
C	1.15269	-1./4/0/	-0.82812
C	-4.33534	-2.01844	0.79790
C	-2.94103	-1.91/35	0.88184
N	-2.12066	-2.96264	0.43100
С	-2.65745	-4.13975	-0.10005
С	-4.04428	-4.31109	-0.20253
С	-5.03780	-3.23423	0.21017
С	-5.09714	-0.94033	1.24349
С	-4.53083	0.21365	1.75480
С	-3.15054	0.29626	1.83966
С	-2.36471	-0.75627	1.41365
С	-1.79999	-5.16124	-0.53000
С	-2.30224	-6.33836	-1.04948
С	-3.67205	-6.52380	-1.15277
Ĉ	-4.51546	-5.51120	-0.73033
Ĉ	-5.82493	-2.79254	-1.03294
č	-6.00392	-3 81088	1 25386
ĉ	-2 24956	5 16835	0.09713
ĉ	1 01/55	4 51053	0.00715
	-1.01455	2 10402	0.02295
	-0.93372	3.19492	-0.44501
C	-2.07095	2.49935	-0.88378
C	-3.33883	3.08975	-0.81693
C	-3.56440	4.48684	-0.25603
С	-2.26088	6.48219	0.56039
C	-1.11070	7.14837	0.94587
С	0.10273	6.48233	0.87392
С	0.15120	5.17900	0.41910
С	-1.94056	1.19913	-1.38867
С	-3.04702	0.48154	-1.79833
С	-4.30923	1.04792	-1.72536
С	-4.43210	2.33950	-1.24503
Ċ	-4.31569	5.33323	-1.29196
Ĉ	-4.40743	4,36908	1.02313
Ĥ	6.43712	-3.84218	0.90341
н	8 79419	-3 09856	0 63808
н	10 41542	-1 35030	0.03030
н	10.41342	0 06220	-0 28128
11	10.92900	0.90239	-0.20120

Н	9.08895	2.58312	-0.96691
Н	6.72978	1.86953	-0.68577
Н	3.12562	1.64473	-1.94853
Н	2.14321	-3.00723	2.14788
Н	1.71084	0.27223	1.85624
Н	-0.27495	1.74816	1.64868
Н	1.08719	3.07994	-2.17227
Н	-0.28868	-3.59555	2.24936
Н	-0.87183	-1.86766	-1.61121
Н	1.52320	-1.21750	-1.69504
Н	-6.18193	-0.99922	1.17386
Н	-5.15907	1.04134	2.07539
Н	-2.67623	1.19536	2.23116
Н	-1.28277	-0.66591	1.47138
Н	-0.72473	-5.02783	-0.45360
Н	-1.61296	-7.11436	-1.37481
Н	-4.08117	-7.44495	-1.55977
Н	-5.59005	-5.65887	-0.82160
Н	-5.14869	-2.37527	-1.78902
Н	-6.35922	-3.63304	-1.48988
Н	-6.56703	-2.02469	-0.78596
Н	-6.55168	-4.67492	0.86265
Н	-5.45907	-4.13491	2.14751
Н	-6.74825	-3.07015	1.56512
Н	-3.21251	7.00542	0.63332
Н	-1.16388	8.17374	1.30267
Н	1.02379	6.97688	1.17427
Н	1.10763	4.66663	0.36954
Н	-0.95870	0.73495	-1.43808
Н	-2.92132	-0.53631	-2.16624
Н	-5.18974	0.48787	-2.03165
Н	-5.42672	2.77762	-1.18366
Н	-3.72986	5.42741	-2.21299
Н	-5.28120	4.88730	-1.55247
Н	-4.51952	6.34225	-0.91848
Н	-5.36813	3.87927	0.82599
Н	-3.87802	3.77789	1.78036
Н	-4.61774	5.35376	1.45617

Chrom-Py-Ph-DMAC

С	-8.13852	-0.51457	0.02971
С	-7.07963	0.35973	0.27392
С	-5.73682	-0.13155	0.04992
С	-5.55459	-1.45381	-0.36321
С	-6.70794	-2.33456	-0.66848
0	-7.94531	-1.78517	-0.42321
С	-9.45322	-0.11797	0.23147
С	-9.70970	1.16477	0.67757
С	-8.66406	2.05547	0.92016
С	-7.36006	1.65468	0.71772
Ν	-4.68498	0.68109	0.20973
Ν	-4.34199	-1.99134	-0.47435
0	-6.64366	-3.44298	-1.09046
С	-3.47968	0.17388	0.02239
С	-3.30011	-1.21819	-0.22942
С	-2.32111	1.09101	0.06353
С	-1.37552	1.06451	-0.96217
С	-1.08037	-1.57255	0.83992
С	-1.95396	-1.82924	-0.21718
С	-2.12237	1.93550	1.15205
С	-0.94905	2.66828	1.26157
С	0.01488	2.58726	0.26546
С	-0.22206	1.81851	-0.86780
С	0.22366	-2.02646	0.79627
С	0.67941	-2.72288	-0.31636
С	-0.20120	-3.04140	-1.34191
С	-1.51918	-2.61088	-1.28412
Ν	2.06078	-3.05820	-0.40607
С	2.50727	-4.29046	0.08425
С	3.87764	-4.55457	0.20817
С	4.94478	-3.51543	-0.10787
С	4.33961	-2.25587	-0.71196
С	2.95721	-2.06589	-0.83008
С	1.57606	-5.26925	0.45382
С	1.98947	-6.49825	0.93005
С	3.34177	-6.77729	1.05047
С	4.25841	-5.80439	0.69187
С	5.17852	-1.22400	-1.12783
C	4.69878	-0.03532	-1.64858
С	3.32946	0.13200	-1.77457

С	2.46868	-0.87117	-1.37476
Ν	1.26999	3.24459	0.40773
С	2.36268	2.49255	0.86784
С	3.66262	3.00814	0.79728
С	3.97241	4.37632	0.20644
С	2.70226	5.12103	-0.18064
С	1.43039	4.53951	-0.09768
С	2.15468	1.21352	1.39985
С	3.21563	0.44483	1.83679
С	4.50827	0.93723	1.76285
С	4.70815	2.20752	1.25248
С	2.79365	6.41796	-0.68120
С	1.68715	7.13863	-1.09535
С	0.43621	6.54738	-1.01423
С	0.30840	5.26299	-0.52213
С	5.96323	-4.10978	-1.08924
С	5.65211	-3.13542	1.20209
С	4.82369	4.18047	-1.05750
С	4.75628	5.20522	1.23240
Н	-10.24862	-0.82982	0.02965
Н	-10.73835	1.47887	0.83653
Н	-8.87694	3.06318	1.26651
Н	-6.52514	2.32781	0.89334
Н	-1.53573	0.42857	-1.83102
н	-1.42100	-0.99338	1.69652
н	-2.87441	1.97507	1.93729
н	-0.75392	3.29068	2.13251
н	0.53009	1.79340	-1.65441
н	0.91810	-1.81817	1.60844
н	0.16686	-3.60834	-2.19467
н	-2.21453	-2.84336	-2.08788
н	0.51345	-5.06205	0.36637
н	1.24445	-7.24018	1.20830
н	3.68130	-7.73978	1.42433
н	5.31848	-6.02403	0.80395
н	6.25512	-1.34850	-1.02582
н	5.38560	0.75381	-1.94528
н	2.92348	1.05//9	-2.18029
н	1.39619	-0./1818	-1.466/1
н	1.14829	0.80481	1.45059
н	3.02896	-0.55392	2.22922
н	5.35249	0.33463	2.08946
н	5.72641	2.58/22	1.19010
н	3.77464	6.88263	-0.76046
	1.00202	0.14010	-1.40121
	-0.45206	7.06009	-1.33039
		4.80971	-0.46512
	5.47732	-4.30/05	-2.03120
	0.70203	-3.39834	-1.32061
	0.44221	-2.00291	1 02100
	0.43290	-2.30493	1.03190
	4.90022	-2./1823	1.9198/
	0.12303	-4.00/49	1.0/025
п	4.2/300	3.39/04	-1.80590
	5.09047	3.14033	-1.51388
п	5./5543	3.04/98	-0.83426
п	J.UZZOZ A 16416	2 3ECVC	0.030/9
Ц	5 60000	J.JJ040 1 71102	2.141/1
11	2.02020	4./1103	1.910//

DBChrom-Qx-DMAC

С	8.62798	1.40179	0.00001
С	9.57304	0.37611	0.00001
С	9.17386	-0.94678	0.00000
С	7.81882	-1.24639	0.00000
С	6.85792	-0.23538	0.00000
С	7.28317	1.09591	0.00001
0	7.49126	-2.57027	-0.00001
С	6.20083	-3.04023	-0.00002
С	5.14385	-1.99669	-0.00001
С	5.46232	-0.62650	0.00000
0	6.01431	-4.21355	-0.00003
Ν	3.89384	-2.42087	-0.00002
Ν	4.50215	0.29131	0.00000
С	3.23815	-0.12655	0.00000
С	2.92670	-1.50924	-0.00001
С	2.16753	0.85408	0.00000
С	0.82328	0.42554	0.00000
С	0.50540	-1.00118	-0.00001
С	1.54462	-1.95237	-0.00001

C	2.47104	2,22210	0.00001
č	1 47077	3 16456	0.00002
č	1.47077	3.10450	0.00002
C	0.13/53	2.74990	0.00001
С	-0.17634	1.40820	0.00000
С	-0.81443	-1.47188	-0.00001
ĉ	-1 09130	-2 82206	-0.00001
č	0.05407	2.02200	0.00001
C	-0.05407	-3./3005	-0.00002
С	1.25076	-3.32210	-0.00002
С	-2.34303	5.22458	-1.25895
С	-1.36306	4,22420	-1.22357
N	0.00275	2 72005	0.00001
	-0.90373	3.72093	1.22261
C	-1.36307	4.22418	1.22361
С	-2.34305	5.22455	1.25899
С	-2.96168	5.81599	0.00002
Ċ	-2 76663	5 67705	-2 50649
č	2.70000	5.07705	2.50045
C	-2.25633	5.18201	-3.693/8
С	-1.28464	4.19540	-3.64295
С	-0.84258	3.72104	-2.42304
C	-0 84262	3 72099	2 42307
č	1 20470	4 10522	2.12307
C	-1.26470	4.19552	5.04299
C	-2.25639	5.18192	3.69382
С	-2.76667	5.67699	2.50653
С	-4.46748	5.51607	0.00001
ĉ	2 72052	7 22502	0.00004
č	-2.73932	7.33303	1.25002
C	-4.42057	-3.91952	1.25893
С	-3.08648	-3.49327	1.22328
N	-2.44572	-3.26230	-0.00001
C	-3 08650	-3 40321	-1 22331
č	4 42050	2 01045	1 25905
C	-4.42059	-3.91945	-1.25695
С	-5.24582	-4.14707	-0.00001
С	-5.00577	-4.12362	2.50644
С	-4.32231	-3.92731	3.69366
č	-3 00182	-3 51028	3 64264
C	-3.00182	-3.31028	3.04204
C	-2.39021	-3.29480	2.422/8
С	-2.39024	-3.29469	-2.42281
С	-3.00188	-3.51010	-3.64267
C	-4 32237	-3 92713	-3 69369
č	E 00E01	4 1 2 2 4 0	2 50647
C	-3.00301	-4.12349	-2.30047
C	-6.42829	-3.16/49	0.00002
С	-5.77250	-5.58896	-0.00004
Н	8.95079	2.43937	0.00002
H	10 63381	0 61429	0.00001
	0.00715	1 76614	0.00001
п	9.88/15	-1.76614	0.00000
н	6.52626	1.87565	0.00001
Н	3.51660	2.51530	0.00001
н	1.69272	4,22953	0.00002
н	-1 23025	1 1/372	0.00000
	-1.23023	0.70002	0.00000
п	-1.00062	-0.79003	0.00000
н	-0.29843	-4.81673	-0.00003
Н	2.07979	-4.02415	-0.00003
н	-3 53129	6 45017	-2 55278
ü	2 61 524	5 56275	1 61612
	-2.01524	3.30273	-4.04045
н	-0.86372	3./85/1	-4.55831
Н	-0.08252	2.94554	-2.39927
Н	-0.08255	2.94549	2.39929
н	-0.86379	3,78560	4,55834
н	-2 61532	5 56764	4 61610
	-2.01552	5.50204	4.04040
п	-3.53133	6.45011	2.55283
н	-4.64734	4.43513	-0.00001
Н	-4.95960	5.93804	0.88331
н	-4.95959	5.93806	-0.88330
н	-3 18694	7 80697	0.88127
	1 ((0)4	7.00007	0.00127
п	-1.66934	7.57031	0.00005
Н	-3.18693	7.80699	-0.88119
Н	-6.04360	-4.44825	2.55266
н	-4.81686	-4,09826	4.64633
н	-7 12605	2 2/072	4 55704
н ц	1 25502	-2.240/2	00/CC.F
п	-1.35503	-2.90/02	2.398/1
Н	-1.35507	-2.96691	-2.39874
Н	-2.43692	-3.34852	-4.55789
н	-4.81693	-4.09802	-4.64636
н	-6 04264	_4 //012	-2 55260
	-0.04304	-4.44012	-2.35209
н	-6.0/2//	-2.13088	0.00005
Н	-7.06160	-3.30492	-0.88355
Н	-7.06159	-3.30496	0.88360
н	-6.39077	-5.79135	-0.88104
н	_1 04200	-6 30470	
	-4.94298	-0.304/8	-0.00007
н	-6.390/6	-5./9140	U.88095