SUPPORTING INFORMATION

N, S coordination in Ni single atom catalyst promoting CO₂RR towards HCOOH

Zengxuan Chen^a, Shoufu Cao^a, Jiao Li^a, Chunyu Yang^a, Shuxian Wei^b, Siyuan Liu^a,

Zhaojie Wang^{a*}, Xiaoqing Lu^{a*}

^a School of Materials Science and Engineering, China University of Petroleum,

Qingdao, Shandong 266580, P. R. China

^b College of Science, China University of Petroleum, Qingdao, Shandong 266580, P.

R. China

* Corresponding authors: Zhaojie Wang and Xiaoqing Lu

E-mail address: wangzhaojie@upc.edu.cn and luxq@upc.edu.cn

Figure S1. Optimized structures of (a) NiN_2S_2 -1, (b) NiN_1S_3 , and (c) NiS_4 .

Figure S2. Charge density difference of NiN₂S₂-1, NiN₁S₃, and NiS₄. Yellow and cyan regions represent increasing and decreasing electron densities, respectively, and the isosurface values were 2×10^{-3} e per Bohr³.

potentials	0V	-0.23V	-0.54V	-0.84V
top-view				
Side-view	1 3.26Å CO _{2 ads} -0.58eV	¹ 3.34Å CO _{2 ads} -0.71eV	¹ 3.38Å CO _{2 ads} -0.64eV	1.99Å CO _{2 ads} -0.37eV

Figure S3. Optimized adsorption configurations and adsorption energies of CO_2 on NiN_4 under different potentials.

Figure S4. Free energy profiles of CO_2RR to (a) CO and (b) HCOOH on NiN_2S_2 -1, NiN_1S_3 , and NiS_4 .

Figure S5. Optimized adsorption configurations of CO₂ and H on NiN₄, NiN₃S₁, and NiN₂S₂.

Figure S6. (a) Summary of limiting potential $\begin{pmatrix} U & CO_2 RR \\ U & L \end{pmatrix}$ of products for the CO and HCOOH productions on NiN₂S₂-1, NiN₁S₃ and NiS₄. (b) Limiting potential difference between CO₂RR and CO RR

HER $(\bigcup_{L}^{CO_2RR} - \bigcup_{L}^{HER}).$

NiN _x S _y	E _{coh} (eV)	E _f (eV)	U _{diss} (V)
NiN ₄	9.03	-6.39	2.93
NiN_3S_1	8.89	-4.57	2.02
NiN_2S_2	8.76	-2.62	1.05
NiN_2S_2-1	8.78	-4.37	1.93
NiN ₁ S ₃	8.64	-2.28	0.88
NiS_4	8.52	-2.69	1.09

Table S1. Cohesive energy E_{coh} , formation energies E_{f} , and dissolution potential U_{diss} of NiN_xS_y.

	$\Delta G/eV$			
Elementary step	NiN ₄	NiN_3S_1	NiN ₂ S ₂	
$CO_2 + H^+ + e^- \rightarrow *COOH$	1.47	1.19	0.57	
$*COOH + H^+ + e^- \rightarrow *CO + H_2O$	-0.95	-0.90	-0.91	
$*CO \rightarrow CO + *$	-0.64	-0.10	0.53	
$*CO_2 + H^+ + e^- \rightarrow *HCOO$	1.14	0.50	-0.18	
$*\text{HCOO} + \text{H}^+ + e^- \rightarrow *\text{HCOOH}$	-0.66	-0.10	0.24	
*HCOOH \rightarrow HCOOH + *	-0.43	-0.42	-0.08	

Table S3. Summary of CO₂RR potential determining steps (PDS), limiting potential $\begin{pmatrix} U^{CO_2RR} \\ L \end{pmatrix}$ of CO₂RR and limiting potential difference between CO₂RR and HER $\begin{pmatrix} U^{CO_2RR} \\ L \end{pmatrix}$ on NiN₄, NiN₃S₁ and NiN₂S₂.

				U ^{CO} 2 ^{RR}	$U_{L}^{CO_2RR}$ - U_{L}^{HER}
Catalysts	Products	PDS	$\Delta G/eV$	V	V
				vs RHE	vs RHE
NiN4	СО	$*CO_2 + H^+ + e^- \rightarrow *COOH$	1.47	-1.47	-0.33
	НСООН	$*CO_2 + H^+ + e^- \rightarrow *HCOO$	1.14	-1.14	0
NiN ₃ S ₁	СО	$*CO_2 + H^+ + e^- \rightarrow *COOH$	1.19	-1.19	-0.50
	НСООН	$*CO_2 + H^+ + e^- \rightarrow *HCOO$	0.50	-0.50	0.19
NiN ₂ S ₂	СО	$\rm CO_2 + H^+ + e^- \rightarrow * \rm COOH$	0.57	-0.57	-0.20
	НСООН	*HCOO + H ⁺ + $e^- \rightarrow$ *HCOOH	0.24	-0.24	0.13

Table S4. Summary of CO₂RR potential determining steps (PDS), limiting potential $\begin{pmatrix} U^{CO_2RR} \\ L \end{pmatrix}$ of CO₂RR and limiting potential difference between CO₂RR and HER $\begin{pmatrix} U^{CO_2RR} \\ L \end{pmatrix}$ on NiN₂S₂-1, NiN₁S₃ and NiS₄.

				U ^{CO2RR}	$U_{L}^{CO_2RR} - U_{L/}^{HER}$
Catalysts	Products	PDS	$\Delta G/eV$	V	V
				vs RHE	vs RHE
NiN ₂ S ₂ -1	СО	$*CO_2 + H^+ + e^- \rightarrow *COOH$	1.53	-1.53	-0.43
	НСООН	$*CO_2 + H^+ + e^- \rightarrow *HCOO$	1.11	-1.11	-0.01
NiN ₁ S ₃	СО	$*CO \rightarrow *+CO$	1.14	-1.14	-0.50
	НСООН	*HCOOH \rightarrow * + HCOOH	0.96	-0.96	-0.32
NiS4	СО	$*CO_2 + H^+ + e^- \rightarrow *COOH$	0.97	-0.97	0.25
	НСООН	$*CO_2 + H^+ + e^- \rightarrow *HCOO$	0.29	-0.29	0.93