Supplementary Material

Non-noble-metal TiC nanoparticles promoted charge separation and photocatalytic degradation performance on Bi₂O₃ microrods: degradation pathway and mechanism investigation

Tao Xian $^{1\ast},$ Ke Ma 1, Lijing Di $^{1\ast},$ Xuelian Ma 1, Xiaofeng Sun 3 and Hua Yang 2

¹ College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China

² School of Science, Lanzhou University of Technology, Lanzhou 730050, China

³ State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,

Lanzhou University of Technology, Lanzhou 730050, China

Photoelectrochemical detection

The electrochemical impedance spectroscopy (EIS) was performed on an electrochemical workstation (CHI660E) with a three-electrode cell system. In this electrode system, the platinum foil and standard calomel electrode were used as the counter electrode and reference electrode, respectively. The fabrication of working electrode was as follows: 15 mg sample, 0.75 mg carbon black and 0.75 mg polyvinylidene fluoride (PVDF) were dissolved in 1-methyl-2-pyrrolidione (NMP) to obtain slurry. Then, the slurry was evenly coated on a $1.0 \times 1.0 \text{ cm}^2$ fluoride-doped tin oxide glass electrode, which was then heated at 60 °C for 5 h. Na₂SO₄ aqueous solution (0.1 mol·L⁻¹) was employed as the electrolyte. The EIS test was performed by using the sinusoidal voltage pulse with amplitude of 5 mV with frequency range from 10^{-2} to 10^5 Hz.

No	Atom	q(N)	q(N+1)	q(N-1)	f-	f^+	f^{0}	CDD
1	С	-0.039	-0.066	0.0047	0.0437	0.027	0.0353	-0.0166
2	С	-0.0366	-0.059	0.0127	0.0493	0.0224	0.0359	-0.0268
3	С	-0.0021	-0.0141	0.0099	0.012	0.012	0.012	0
4	С	-0.0024	-0.0088	0.0056	0.008	0.0064	0.0072	-0.0015
5	С	-0.0378	-0.0402	0.0044	0.0422	0.0024	0.0223	-0.0398
6	С	-0.0348	-0.0655	0.0105	0.0453	0.0307	0.038	-0.0145
7	Н	0.051	0.0255	0.0809	0.0299	0.0255	0.0277	-0.0044
8	Н	0.0479	0.0276	0.0752	0.0273	0.0203	0.0238	-0.007
9	Н	0.0466	0.029	0.072	0.0255	0.0176	0.0215	-0.0079
10	С	-0.0287	-0.0772	0.0375	0.0662	0.0484	0.0573	-0.0177
11	С	0.0205	0.0155	0.0653	0.0448	0.005	0.0249	-0.0398
12	Н	0.0432	0.0387	0.0616	0.0183	0.0046	0.0114	-0.0138
13	Н	0.0496	0.0298	0.0762	0.0267	0.0197	0.0232	-0.007
14	С	0.0722	0.0466	0.1131	0.0408	0.0257	0.0333	-0.0152
15	С	-0.0499	-0.0686	-0.0144	0.0355	0.0187	0.0271	-0.0168
16	Н	0.053	0.0323	0.0787	0.0256	0.0207	0.0232	-0.0049
17	Ο	-0.2143	-0.2235	-0.1859	0.0284	0.0092	0.0188	-0.0192
18	Н	0.1794	0.1636	0.2001	0.0207	0.0157	0.0182	-0.005
19	Ν	-0.0571	-0.187	0.0026	0.0598	0.1298	0.0948	0.07
20	Ν	-0.0594	-0.2091	0.0258	0.0852	0.1498	0.1175	0.0646
21	С	0.046	0.0329	0.0496	0.0036	0.0131	0.0084	0.0095
22	С	-0.0181	-0.0519	0.0006	0.0187	0.0338	0.0263	0.015
23	С	-0.0317	-0.0593	-0.0159	0.0158	0.0276	0.0217	0.0118
24	С	-0.0103	-0.0409	0.0088	0.0191	0.0306	0.0249	0.0115
25	Н	0.0642	0.0429	0.0765	0.0122	0.0213	0.0168	0.0091
26	С	-0.0242	-0.0535	-0.0056	0.0186	0.0293	0.024	0.0107
27	Н	0.0518	0.0347	0.0612	0.0094	0.0171	0.0132	0.0077
28	С	-0.0078	-0.0492	0.0198	0.0275	0.0415	0.0345	0.0139
29	Н	0.0652	0.0436	0.0798	0.0147	0.0216	0.0181	0.0069
30	Н	0.0577	0.0356	0.0735	0.0158	0.0221	0.019	0.0063
31	S	0.5201	0.4996	0.5319	0.0119	0.0205	0.0162	0.0086
32	0	-0.361	-0.3975	-0.3264	0.0347	0.0365	0.0356	0.0018
33	0	-0.3641	-0.4043	-0.325	0.0391	0.0402	0.0397	0.0011
34	0	-0.1959	-0.2124	-0.1833	0.0126	0.0165	0.0145	0.004
35	Н	0.2066	0.1901	0.2179	0.0114	0.0165	0.0139	0.0051

Table S1 The Fukui index (nucleophilic index f^+ , electrophilic index f^- and f^0) and the condensed dual descriptor (CDD) of AO7

Salatanaa	Acute toxicity	Bioaccumulation factor	Developmental toxicity	
Substance .	Daphnia magna LC ₅₀	Predicted value	Predicted	Predicted
	(48h) (mg/L)		value	result
A07	33	7.34	0.89	Developmental
1107	5.5			toxicant
P1	3 21	3 73	0.59	Developmental
11	5.21	5.75	0.57	toxicant
P2	314 67	2.7	0.55	Developmental
12	514.07			toxicant
D2	02.03	1.83	0.62	Developmental
15	92.03			toxicant
D/	000 46	1 50	0.84	Developmental
14	990.40	1.57		toxicant
P5	3180 55	0.01	0.61	Developmental
1.5	5160.55	0.01	0.01	toxicant
P6	230 77	2.81	0.88	Developmental
10	239.11	2.01	0.00	toxicant
P7	1638 12	0.02	0.46	Developmental
1 /	1030.12			non-toxicant
P8	177 21	0.52	0.48	Developmental
10	1//.21			non-toxicant

Table S2	Toxicity analysis	result of AO7 an	d its intermediates

Fig. S1. The mass-to-charge ratio (m/z) of intermediates and the corresponding possible molecular structure

Fig. S2. Mott-Schottky (M-S) plot of bare Bi_2O_3