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𝑖𝑖 

S1. Langevin dynamics simulations 

All CG atoms in the simulation were assumed to execute Brownian motion in an implicit 

solvent. Their dynamics was described by the Langevin equation, S1 1,2 , 

 𝑚𝑚𝑖𝑖
𝑑𝑑2𝑟𝑟𝑖𝑖
𝑑𝑑𝑑𝑑2

= −ζ𝑣𝑣𝑖𝑖 − ∇𝑖𝑖𝑈𝑈�𝑟𝑟𝑖𝑖𝑖𝑖� + 𝐹𝐹𝑖𝑖𝑟𝑟(𝑑𝑑) + 𝐹𝐹𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 S1 

where, 𝑚𝑚𝑖𝑖, 𝑟𝑟𝑖𝑖, ζ, and 𝑣𝑣𝑖𝑖 represented mass, position, damping coefficient and velocity of any 

particle 𝑖𝑖, respectively. The only exceptions were the CG atoms that made up the wall of the 

cylindrical pore, which were assumed to be immobile during the simulation. Random forces, 

𝐹𝐹𝑖𝑖𝑟𝑟, acting on CG atoms were described by the fluctuation-dissipation theorem described in S2, 

 �𝐹𝐹𝑖𝑖𝑟𝑟(𝑑𝑑)𝐹𝐹𝑖𝑖𝑟𝑟(𝑑𝑑′)� = 6ζ𝑘𝑘𝐵𝐵𝑇𝑇δ(𝑑𝑑 − 𝑑𝑑′)δ𝑖𝑖𝑖𝑖, S2 

A constant, downward external force, 𝐹𝐹𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐹𝐹, was applied to the tracer particle to nudge the 

tracer toward the NPC. This models the effect of Ran-GTP/GDP gradient in the biological 

scenario which confers directionality to cargo motion 3–8. Although, the application of a 

constant force appears to be an over-simplified representation of a more complex process, it is 

meant to mimic the essential features of directional nucleocytoplasmic transport in our simple 

CG polymer-based model. 

The net interaction potential, 𝑈𝑈�𝑟𝑟𝑖𝑖𝑖𝑖� was described as a sum of excluded volume interactions, 

𝑈𝑈𝐿𝐿𝐿𝐿, and bond potentials, 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (for the copolymer chains) as shown in equation S3, 

 𝑈𝑈�𝑟𝑟𝑖𝑖𝑖𝑖� = 𝑈𝑈𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, S3 

The excluded volume interactions between any two CG beads were described by the Lennard-

Jones interactions given by equation S4, 
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 𝑈𝑈𝐿𝐿𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖� =  �
4𝜖𝜖𝐿𝐿𝐿𝐿 ��

𝜎𝜎
𝑟𝑟𝑖𝑖𝑖𝑖
�
12

 � − ��
𝜎𝜎
𝑟𝑟𝑖𝑖𝑖𝑖
�
6

 � , 𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 2.5𝜎𝜎

                                0,                                  𝑟𝑟𝑖𝑖𝑖𝑖 > 2.5𝜎𝜎        
  S4 

where, 𝜖𝜖𝐿𝐿𝐿𝐿 and 𝜎𝜎 are the Lennard-Jones interaction parameter and van der Waals diameter, 

respectively. Bond potentials, 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, for freely-jointed copolymer chains were described by 

the FENE (finitely-extensible non-linear elastic) potential 9,10 as mentioned in equation S5, 

 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = −
1
2
𝑘𝑘𝑅𝑅𝑚𝑚𝑚𝑚𝑒𝑒2 ln[1 − (𝑟𝑟𝑏𝑏/𝑅𝑅𝑚𝑚𝑚𝑚𝑒𝑒)2] S5 

where, maximum allowable distance between beads 𝑅𝑅𝑚𝑚𝑚𝑚𝑒𝑒 = 1.5𝑙𝑙0, 𝑟𝑟𝑏𝑏 is separation distance 

between any adjacent beads, 𝑙𝑙0 is the bond length along the polymer chain and 𝑘𝑘 is spring 

constant. The velocity-Verlet algorithm 2 was employed to solve equation 1 numerically with 

a timestep Δ𝑑𝑑 of 0.001𝜏𝜏. Since, the Langevin equation was solved in the over-damped regime, 

the corresponding scale for time was described by 𝜏𝜏 = 𝜁𝜁𝑙𝑙02 𝑘𝑘𝐵𝐵𝑇𝑇⁄ s, where the Stokes drag 

coefficient is 𝜁𝜁 = 6𝜋𝜋𝜋𝜋𝜎𝜎. Correspondingly, the thermal energy, 𝑘𝑘𝐵𝐵𝑇𝑇, was the scale for energy 

and 𝑘𝑘𝐵𝐵𝑇𝑇/𝑙𝑙0 was the appropriate scale for force in the simulations. 
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S2. Langevin dynamics simulation scales 

S2.1 Non-dimensionalisation of scales  

The dimensionless simulation scales correspond to actual dimensional values in the 

following manner;   

i. The scale for length, 𝑙𝑙0, corresponds to approximately the size of two adjacent 

residues along a polypeptide chain, which is approximately 1 nm. Hence,  

𝑙𝑙0 = 1 ≡ 1 nm 

 

ii. All simulations are relevant at the physiological temperature of 310 K. Therefore, 

𝑇𝑇 = 1 ≡ 310 K 

 

iii. Thermal energy is used as the relevant scale for energy. Hence,  

𝜖𝜖 = 1 ≡ 𝑘𝑘𝐵𝐵𝑇𝑇 

 

iv. Accordingly, force is defined as, 

𝐹𝐹 = 1 ≡
𝜖𝜖
𝑙𝑙0
≡
𝑘𝑘𝐵𝐵𝑇𝑇
𝑙𝑙0

≡ 4 pN 

 

v. A characteristic time-scale corresponding to a diffusion time is defined as, 

𝜏𝜏 = 1 ≡
6𝜋𝜋𝜋𝜋𝜋𝜋
𝐾𝐾𝐵𝐵𝑇𝑇

𝑙𝑙02 = 22 ns 

which assumes a cellular viscosity of 𝜋𝜋 = 5 cP 11,12. However, this value was 

rounded off to 𝜏𝜏 = 20 ns, which was chosen as the characteristic time-scale in 

the simulations. 
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S2.2 Rationalisation of choice of scales 

1. Length scales: 

a. Nup length: In a yeast NPC, four rings (32 copies) of Nsp1 (≈ 600 residues) are 

present. In the current study, FG-Nups are modelled on Nsp1. In our coarse-graining 

scheme, every polymer united atom (bead) represents two adjacent amino acids. As 

a result, the FG-Nup length in the current study was 𝑁𝑁 = 300. Whereas, the 

diameter of a polymer bead was 0.75 nm, the polymer (Nup) bond length was 1 nm. 

The bond length of 1 nm approximately corresponded to the size of two adjacent 

residues.  

b. Pore (NPC) dimensions: Whereas, the diameter of a typical NPC lies in the range 

30 – 50 nm, the height (or the axial extent across the nuclear membrane) is reported 

to vary between 40 – 90 nm. In the current study, we considered a cylindrical pore 

for the NPC to represent the transmembrane part of the NPC. Hence, we used a 

diameter and height of 50 nm and 45 nm, respectively. Both numbers are in the 

range of reported dimensions of NPCs across various organisms 4,13,14. 

c. Tracer Diameter: Cargoes less than 5-6 nm or (40kDa) can passively diffuse 

through the pore, whereas cargoes larger than 5-6 nm require karyopherins to assist 

them in passage6. A typical karyopherin, such as importin-beta, is approximately 10 

nm in size along the longest dimension. This implies that a cargo of a karyopherin-

bound globular protein will be larger than this size. Hence, the choice of 𝑑𝑑𝑒𝑒 = 12 

nm for the tracer particle in the current study. 
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2 Energy scales: 

a. In the current study, thermal energy, 𝑘𝑘𝐵𝐵𝑇𝑇, was used as a fundamental scale for 

energy. This is significant since the FG-Nups have been shown to form a thermal, 

entropic brush in situ in experiments15. 

b. In addition, hydrophobic interactions between FG-FG segments and FG-receptor 

segments, are important because these interactions determine network formation 

and tracer transport through the pore. These were represented by Lennard-Jones 

(LJ) potentials and their values were consistent with LJ parameter values used in 

similar coarse-grained simulations by Baygi and coworkers11. In that study too, FG-

receptor interactions were stronger in comparison to FG-FG interactions. According 

to the selective phase model, Kap can locally break down network crosslinks during 

cargo translocation because Kap-FG affinity is higher than FG-FG affinity16. The 

same hypothesis was also adopted in another simulation study by Ghavami and 

coworkers17,18 to assess the FG-Nup dynamics inside the pore. The implication of 

the choice of the LJ parameters for various hydrophobic interactions is explained in 

more detail in Point number 3 (on scales for force). 

3. Scales for force:  

a. In the current study, a constant, downward external force, 𝐹𝐹𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐹𝐹𝑒𝑒, was applied 

to the tracer particle to nudge the tracer toward the NPC. The magnitude of this 

force was 𝐹𝐹𝑒𝑒 = 2 pN, which is approximately half of the thermal force in the system. 

This modelled the effect of Ran-GTP/GDP gradient in the biological scenario which 

confers directionality to cargo motion3,7,8,19,20. In a previous simulation study, Baygi 

and coworkers also used a small nudging force in their cargo translocation 

simulations through the pore, which acted as a guiding force to help the tracer find 
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the pore entry20. In their studies, the nudging force was on the order of the thermal 

noise and was varied between 0.25 – 4.5 pN.  

b. In an experimental study, Otsuka and co-workers measured the FG-cargo binding/ 

rupture forces through single molecule force measurements21. Statistically, two 

different populations of rupture force were detected in their study, corresponding to 

a smaller (29±6.2 pN) and a larger (49±4.8 pN) force, respectively. The value of 

𝐹𝐹𝑒𝑒 = 2 pN is much smaller in comparison to the 30 – 50 pN rupture force measured 

between FG-Nups and receptors (importin-β). Further, they estimated 4 binding 

pockets for importin-β, which translates to a rupture force of 7 – 12 pN per binding 

pocket. 

For the simulation parameters used in the current study, a calculation of the FG-receptor 

hydrophobic attractive force for 𝜖𝜖26 = 1.5 − 2.0 yielded a value of 𝐹𝐹26 = 14 − 19 pN 

for every FG bead-receptor bead contact. Although, this force was nearly two times that 

estimated by Otsuka et al., it is remarkable that our coarse-grained description provided 

a close estimate of the rupture force. It should also be noted that the isotropic, spherical 

shape used for the tracer in the current study is an oversimplification of the three-

dimensional shape of the karyopherin-cargo complex. A complex shape may result in 

variable accessibility of FG-Nups to FG-binding domains on karyopherins and 

accordingly affect the rupture forces. 
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Figure S1. Schematic of simulation setup showing the simulation box dimensions and the 
coarse-grained description of both NPC and tracer. 
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Figure S2. Simulation snapshots showing top and side views of equilibrium brush structures 
for the model NPC corresponding to (A) 𝑓𝑓 = 0, 0.05, 0.10, 0.15, and (B) 𝑓𝑓 =
0.20, 0.25, 0.30, 0.40. 
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S3. Stillinger algorithm for identifying clusters 

FG-beads (type 2 beads) in the polymer brush formed dynamic crosslinks due to hydrophobic 

interactions. Collectively, these crosslinks gave rise to the formation of clusters inside the NPC. 

The Stillinger algorithm was used in the current work to identify and quantify the formation of 

clusters inside the cylindrical NPC pore 22,23. 

Consider a system of N particles that interact with each other through a short-range pair 

potential, 𝑉𝑉(𝑟𝑟). An effective interaction distance, 𝑏𝑏, can be defined around each sphere within 

which pair interaction are significant enough to result in clustering of particles. Overlaps 

between neighboring spheres can then be obtained by drawing a sphere of radius b/2 around 

every particle. As shown in Figure S3, overlapping spherical regions define a cluster, C, 

constituted of all overlapping particles. If particle 𝑖𝑖 belongs to a cluster, C, and 𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑏𝑏, then 𝑗𝑗 

also belongs to C.  

 
 

Figure S3. Cluster identification algorithm. Overlapped particles of radius b/2 forming 
clusters. 18 particles shown in configuration shows 1 cluster consisting of 2 particles, 2 clusters 
consisting of 3 particles and 1 cluster of 5 particles. 
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Figure S4. Snapshot of cluster formation inside the pore for f = 0.2. A part of the brush from 
only the middle section of the pore (left) is taken to highlight the formation of hydrophobic 
clusters in the region. Clusters are represented as transparent spheres containing crosslinked 
hydrophobic beads (right). 
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Figure S5. Plots showing equilibrated density distributions of brush segments calculated by 
considering, (A – C) both hydrophobic and hydrophilic segments, and (D – F) only 
hydrophobic segments. Density distributions were plotted along the (A, D) axial direction of 
the NPC, (B, E) radial direction of the NPC (inside the cylindrical region), and (C, F) radial 
direction of the NPC (outside the cylindrical region). 
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S4. Tracer trajectories for an inert tracer (𝒅𝒅𝒕𝒕 = 6 nm) 

Nearly all trajectories simulated for inert tracers, 𝑑𝑑𝑒𝑒 = 6 nm at 𝐹𝐹𝑒𝑒= 0.8 pN, were rejected by 

the NPC for all values of f (Figure S5 of the Supporting Information). The scale of thermal 

force in the simulation is, 𝑘𝑘𝐵𝐵𝑇𝑇 𝑙𝑙0⁄ ≈ 4 pN. Hence, 𝐹𝐹𝑒𝑒= 0.8 pN was much weaker compared to 

the Brownian forces on tracers which prevented tracers from entering the NPC. In addition, the 

brush also offered a large entropic barrier to tracer entry at low f because of its significant 

expanse outside the pore. In contrast, all tracer trajectories of 6 nm inert particle translocated 

successfully at 𝐹𝐹𝑒𝑒= 4 pN for every hydrophobic fraction (Figure S6 of the Supporting 

Information). At low f, the tracer was small enough to pass through the open structure of the 

NPC. For 𝑓𝑓 ≥ 0.3, the tracer size was small enough to pass through the gaps in the tightly 

bound network structure. Typical translocation times of ≈ 0.5 ms were observed for 𝐹𝐹𝑒𝑒= 4 pN.  

At an intermediate force of 𝐹𝐹𝑒𝑒= 2 pN, some differentiation in tracer response to the FG 

hydrophobic fraction was observed (Figure S7 of the Supporting Information). A simple back-

of-the envelope calculation based on experimental measurements of concentration gradients 

shows that a value of 𝐹𝐹𝑒𝑒= 2 pN is appropriate in the biophysical 3. Most of the 12nm tracer 

trajectories for 𝑓𝑓 ≥ 0.25 were either rejected or trapped by the NPC indicating a signature of 

pore selectivity with respect to the FG hydrophobic fraction, f. However, the motion of a 6 nm 

tracer corresponded to the case of passive translocation through the NPC not requiring transport 

receptors. In contrast, the larger 12 nm tracer corresponded to the case of facilitated transport 

across the NE aided by transport receptors (NTR/Kaps). This is also supported by reports in 

the literature 3–5. 
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Figure S6. Inert tracer trajectories from ten independent simulations shown for different values 
of 𝑓𝑓 corresponding to 𝑑𝑑𝑒𝑒= 6 nm, 𝐹𝐹𝑒𝑒 = 0.8 pN. The simulated trajectories were classified into 
three types, successful (blue), trapped (pink) and rejected (black). Successful trajectories 
corresponded to tracers “successfully” entering the NPC and exiting from the other side. (A) 
Tracer paths during the simulations represented as 𝑧𝑧𝑒𝑒𝑟𝑟 vs 𝑟𝑟 plots, where 𝑧𝑧𝑒𝑒𝑟𝑟 is the z-coordinate 
of the tracer, and 𝑟𝑟 is tracer radial coordinate. (B) Plots showing the variation of 𝑧𝑧𝑒𝑒𝑟𝑟 with time, 
𝑑𝑑. 
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Figure S7. Inert tracer trajectories from ten independent simulations shown for different values 
of 𝑓𝑓 corresponding to 𝑑𝑑𝑒𝑒= 6 nm, 𝐹𝐹𝑒𝑒 = 4.0 pN. (A) Tracer paths during the simulations 
represented as 𝑧𝑧𝑒𝑒𝑟𝑟 vs 𝑟𝑟 plots, where 𝑧𝑧𝑒𝑒𝑟𝑟 is the z-coordinate of the tracer, and 𝑟𝑟 is tracer radial 
coordinate. (B) Plots showing the variation of 𝑧𝑧𝑒𝑒𝑟𝑟 with time, 𝑑𝑑. 
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Figure S8. Inert tracer trajectories from ten independent simulations shown for different values 
of 𝑓𝑓 corresponding to 𝑑𝑑𝑒𝑒= 6 nm, 𝐹𝐹𝑒𝑒 = 2.0 pN. (A) Tracer paths during the simulations 
represented as 𝑧𝑧𝑒𝑒𝑟𝑟 vs 𝑟𝑟 plots, where 𝑧𝑧𝑒𝑒𝑟𝑟 is the z-coordinate of the tracer, and 𝑟𝑟 is tracer radial 
coordinate. (B) Plots showing the variation of 𝑧𝑧𝑒𝑒𝑟𝑟 with time, 𝑑𝑑. 
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S5. Tracer trajectories for inert and patchy tracers (𝒅𝒅𝒕𝒕 = 12 nm) 

 

 

Figure S9. Inert tracer trajectories from twenty independent simulations shown for different 
values of 𝑓𝑓 corresponding to 𝑑𝑑𝑒𝑒= 12 nm, 𝐹𝐹𝑒𝑒 = 2.0 pN. Plots show the variation of z-coordinate 
of the tracer, 𝑧𝑧𝑒𝑒𝑟𝑟, with time, 𝑑𝑑. 

 

 

 

Figure S10. Patchy tracer trajectories from twenty independent simulations shown for different 
values of 𝑓𝑓 corresponding to 𝑑𝑑𝑒𝑒= 12 nm, 𝜖𝜖26 = 1.5, 𝐹𝐹𝑒𝑒 = 2.0 pN. Plots show the variation of 
z-coordinate of the tracer, 𝑧𝑧𝑒𝑒𝑟𝑟, with time, 𝑑𝑑. 
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Figure S11. Patchy tracer trajectories from twenty independent simulations shown for different 
values of 𝑓𝑓 corresponding to 𝑑𝑑𝑒𝑒= 12 nm, 𝜖𝜖26 = 2.0, 𝐹𝐹𝑒𝑒 = 2.0 pN. Plots show the variation of 
z-coordinate of the tracer, 𝑧𝑧𝑒𝑒𝑟𝑟, with time, 𝑑𝑑. 
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S6. Mesh size calculation 

 

Figure S12. Mesh analysis of each frame for last 100 frames of equilibrated brush.  (A) FG-
FG crosslinks give rise to cluster formation throughout the pore. Plot showing number of 
clusters inside the pore, 𝑁𝑁𝑐𝑐,𝑖𝑖𝑏𝑏 as a function of frames. (B) Plot of average mesh size calculated 
for every frame as a function of number of frames. 
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S7. Comparison of NPCs with 𝑵𝑵 = 𝟐𝟐𝟐𝟐𝟐𝟐 and 𝑵𝑵 = 𝟑𝟑𝟐𝟐𝟐𝟐 

 

Figure S13. Plots comparing the equilibrated axial density distributions of brush segments for 
NPCs with 𝑁𝑁 = 200 and 𝑁𝑁 = 300, respectively, for different FG-hydrophobic fraction, 𝑓𝑓 =
0, 0.1, 0.2, 0.3. (A) Axial density distributions of segments from FG-Nups from all 9 rings, (B) 
axial density distributions of segments belonging to only the middle ring (ring 5) located at the 
mid-plane of the pore at 𝑧𝑧 = 0. 

 

Figure S14. (A) Average mesh size inside the pore for chain lengths of N = 300 and N =200 at 
different FG-hydrophobic fraction, 𝑓𝑓. (B) Probability of success through pores of chain length 
of N = 300 and N = 200 with varying tracer-brush interaction strength, 𝜖𝜖26. Probability of 
successful translocation, 𝑝𝑝𝑠𝑠, plotted as a function of 𝑓𝑓 for patchy tracers translocating through 
NPCs with of N = 300 and N = 200, respectively. Both sets of simulations were carried out 
with 𝑑𝑑𝑒𝑒= 12 nm and 𝐹𝐹𝑒𝑒 = 2 pN. 
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S8. Effect of mesh size on 𝒑𝒑𝒔𝒔 

 

Figure S15. Probability of successful translocations, 𝑝𝑝𝑠𝑠, plotted as a function of reduced mesh 
size, 〈ξ〉 dt⁄ . 
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