Supplemental Material

Biaxial strain modulated electronic structure of layered twodimensional MoSiGeN₄ Rashba systems

Puxuan Li^{1#}, Xuan Wang^{1,2*#}, Haoyu Wang¹, Qikun Tian^{1,3}, Jinyuan Xu³, Linfeng Yu³, Guangzhao Qin^{3*},

Zhenzhen Qin^{1*}

¹International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, P. R. China ²Institute for Frontiers in Astronomy and Astrophysics, Department of Astronomy, Beijing Normal University, Beijing 100875, P. R. China ³National Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China

[#] These authors contributed equally to this work.

^{*}Corresponding author: gzqin@hnu.edu.cn; qzz@zzu.edu.cn

(a) The change of Geometry Structures under biaxial strain

Fig. S1. The schematic diagram of structural parameters and the changes of band length, band angle and thickness under biaxial strains. The thickness and θ_1 , θ_2 , θ_5 , θ_7 , θ_8 of MoSiGeN₄ increases with the decrease of compressive strain and decreases as tensile strain increase, a trend opposite to that of bonds length and θ_3 , θ_4 , θ_6 , θ_9 .

Fig. S2. The band structure of $MoSi_2N_4$ (a) and $MoSiGeN_4$ (b) by using HSE functional (red line). The band structure of $MoSi_2N_4$ (c) and $MoSiGeN_4$ (d)by using PBE functional (blue line).

(c) The Geometry Structures of bilayer $MoSiGeN_4$

 $Fig. \ S3. \ The \ three \ stacking \ structures \ of \ (a) \ Si_{top}-Ge_{bot} \ (b) \ Ge_{top}-Ge_{bot} \ and \ (c) \ Si_{top}-Si_{bot} \ for \ bilayer \ MoSiGeN_4.$

(d)Ab-initio Molecular Dynamics

Fig. S4. The ab initio molecular dynamics (AIMD) of $MoSiGeN_4$ monolayer (blue line), bilayer (red line) and trilayer (black line) under different strains (-8%, 0% and 12%).

(e) The orbital-projected band structure of $MoSiGeN_4$ monolayer

Fig. S5. The orbital-projected band structures of $MoSiGeN_4$ monolayer. The color of red, blue and green are the contribution of N-*p*, N-*p*_{x,y} and Mo-*dz*², respectively.

(f) The orbital-projected band structures of MoSiGeN₄ mutilayer

Fig. S6. The orbital-projected band structures of $MoSiGeN_4$ bilayer (MSGN BL) and $MoSiGeN_4$ trilayer (MSGN TL). The color of green, red and blue are the contribution of $Mo-dz^2$ in the upper layer, middle layer and the lower layer, respectively.

(g) The band structure of trilayer MoSiGeN₄

12 %

Fig. S7. Band structure of trilayer $MoSiGeN_4$ under biaxial strains considering without (blue lines) and with SOC (red lines). The enlarged drawing of Rashba spin splitting (orange patch) and Lifshitz-type spin splitting (green patch) are shown in the inset.

(h) The dipole moment and electronic structures of MoSiGeN₄ monolayer and mutilayer

Table SI: The dipole moment *P*, bang gap E_g , Rashba coefficient α_R , Mexican coefficient *M*, L coefficient E_{1-2} , E_{2-3} , k_f and k_L of MoSiGeN₄ monolayer, bilayer and trilayer. Dip. denotes include dipole corrections in calculations with VASP.

Structure	Monolayer		Bilayer		Trilayer	
Strain	0 %	8 %	0 %	8 %	0 %	8 %
$P(e \times Å)$	0.026	0.009	0.054	0.021	0.064	0.027
$E_{\rm g}({\rm eV})$	1.35 (Dip.) 1.35	0.29(Dip.) 0.30	0.64 (Dip.) 0.76	0.005(Dip) 0.01	0.48(Dip.) 0.38	0.003 0.001
M (eVÅ)		0.87(Dip.) 0.68		0.30(Dip.) 0.52		0.24(Dip.) 0.39
$\alpha_{\rm R}$ (meVÅ)	63.025 (Dip.) 61.073		35.026 (Dip.) 37.424		24.395(Dip.) 19.968	
E ₁₋₂		0.006(Dip.) 0.006		0.007(Dip.) 0.007		0.006(Dip.) 0.006
E ₂₋₃		0.17(Dip.) 0.13		0.038(Dip.) 0.035		0.006(Dip.) 0.007
k _f		0.02(Dip.) 0.02		0.04(Dip.) 0.04		0.03(Dip.) 0.03
k _L		0.20(Dip.) 0.20		0.15(Dip.) 0.14		0.12(Dip.) 0.12

(i) The Rashba constants of MoSiGeN₄ monolayer and mutilayer

Table SII: The k_0 , E_R , α_R and position of Rashba effect in MoSiGeN₄ monolayer, bilayer and trilayer under biaxial strains. V₁ denotes the highest valence band at Γ point, and C₁ denotes the lowest conduction band at Γ point.

Structure	Strain (%)	Position (Γ)	k_0 (Å ⁻¹)	$E_{\rm R}$ (meV)	$\alpha_{\rm R}$ (meVÅ)
	-6	V_1	0.150	4.378	58.380
	-4	V_1	0.070	1.700	48.220
	-2	V_1	0.043	0.710	32.302
Monolayer	0	V_1	0.070	2.206	63.025
	2	C ₁	0.036	2.360	13.038
	4	C_1	0.019	2.800	28.448
	6	C_1	0.041	3.130	149.540
	8	C_1	0.102	16.500	324.450
	-6	\mathbf{V}_1	0.091	4.000	87.912
	-4	V_1	0.013	0.100	15.384
	-2	V_1	0.072	0.560	15.448
D:1	0	V_1	0.024	0.420	35.026
Bilayer	2	C ₁	0.006	1.151	381.12
	4	C_1	0.018	1.423	240.37
	6	C1	0.016	1.842	173.72
	8	C_1	0.016	9.598	327.15
	-6	V_1	0.075	2.370	62.434
	-4	V_1	0.042	0.405	19.148
	-2	V_1	0.024	0.250	20.815
	0	V_1	0.062	0.627	24.395
Trilayer	2	C_1	0.059	3.552	118.459
	4	C1	0.017	1.307	154.583
	6	C1	0.019	1.563	163.152
	8	C1	0.093	15.108	324.449