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SUPPLEMENTARY MATERIALS

Fig. S1. The screened and unscreened phonon frequency (top panel) and zone-center 

EPC strength (bottom panel) in CaB3C at (a) 50 and (b) 100 GPa. 
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Fig. S2. The screened and unscreened phonon frequency (top panel) and zone-center 

EPC strength (bottom panel) in SrB3C at (a) 50 and (b) 100 GPa. 



Fig. S3. The screened and unscreened phonon frequency (top panel) and zone-center 

EPC strength (bottom panel) in TiB3C at (a) 50, (b)75 and (c) 100 GPa. 



Fig. S4. The screened and unscreened phonon frequency (top panel) and zone-center 

EPC strength (bottom panel) in VB3C at (a)75 and (b) 100 GPa. 

Fig. S5. The vibrational patterns for modes 4, 5, 9, 12, and 13 at the Γ point of CaB3C 

at 50 GPa. 



Fig. S6. The vibrational patterns for modes 4, 5,11, and 12 at the Γ point of CaB3C at 

100 GPa. 

Fig. S7. The vibrational patterns for modes 4, 5, 9, 12, 13, and 14 at the Γ point of 

SrB3C at 75 GPa



Fig. S8. The vibrational patterns for modes 4, 5, 6, 7, 9, 12, 13, 14, and 15 at the Γ point 

of SrB3C at 100 GPa. 



Fig. S9. The electron localization function (ELF) maps of (a) CaB3C at 50 GPa, (b) 

CaB3C at 100 GPa, (c) SrB3C at 75 GPa, (d) SrB3C at 100 GPa, (e) TiB3C at 50 GPa, 

and (f) VB3C at 75 GPa.



Fig. S10. The COHP for pair B1-C1 in CaB3C at (a) 50 GPa and (b) 100 GPa.

Fig. S11. The COHP for pair B1-C1 in SrB3C at (a) 75 GPa and (b) 100 GPa.



Fig. S12. The COHP for pair B1-C1 in (a) TiB3C at 50 GPa and VB3C at 100 GPa.



Fig. S13. Crystal structure and coordination polyhedral of (a) CaB3C and (b) SrB3C.



Fig. S14. The -weighted phonon spectrum, projected phonon density of states 𝛾𝑞𝑣

(PHDOS), Eliashberg spectral function α2F(ω) and crystal structure of TiB3C at (a) 75 

and (b) 100 GPa.

Fig. S15. The -weighted phonon spectrum, projected phonon density of states 𝛾𝑞𝑣

(PHDOS), Eliashberg spectral function α2F(ω) and crystal structure of VB3C at 100 

GPa.



Fig.S16. The pressure-dependence of the Tc of CaB3C, SrB3C, TiB3C, and VB3C 
compounds.

Table S1. The covalent radii (Å) of B and C and ionic radii (Å) of Ca, Sr, Ti, and V.

B C Ca Sr Ti V

Covalent radii

Ionic radii (8-
coordinate)

0.84 0.76

1.26 1.40 0.88 0.86


