Supplementary Information for Lone-pair, Electron-dominated, Nonlinear Optical Responses in Sulfur Clusters and Electric Tunability Properties

Quanjie Zhong*

School of Materials Science and Physics, Nanhu Campus, China University of Mining and Technology, No.1 University Road, Xuzhou 221116, Jiangsu Province, China

E-mail address: <u>quanjiezhong@cumt.edu.cn</u>

1. Theory

1.1 (Hyper)polarizability¹⁻⁴

The Energy of a system can be written as Taylor expansion with respect to a uniform external electric field.

$$E(F) = E(0) - \mu_0 F - (1/2)\alpha F^2 - (1/6)\beta F^3 - (1/24)\gamma F^4 - \cdots$$
(S1)

Where μ_0 , α , β and γ represent the permanent dipole moment, polarizability, and first- and secondorder hyperpolarizability, respectively. Theses parameters can be obtained by taking the derivative of the energy with respect to the external electric field.

The orientationally average polarizability is defined as:

$$\alpha_{ave} = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3 \tag{S2}$$

The orientationally average second-order hyperpolarizability is defined as:

$$\gamma_{ave} = (\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz} + 2\gamma_{xxyy} + 2\gamma_{xxzz} + 2\gamma_{yyzz})/5$$
(S3)

1.2 Second-order hyperpolarizability density^{5–7}

The dipole moment and electron density can be described as follow:

$$\mu(F) = -\frac{\partial E}{\partial F} = \mu_0 + \alpha F + (1/2)\beta F^2 + (1/6)\gamma F^3 + \cdots$$
(S4)

$$\rho(r,F) = \rho^{(0)}(r) + \rho^{(1)}(r)F + (1/2)\rho^{(2)}(r)F^2 + (1/6)\rho^{(3)}(r)F^3 + \cdots$$
(S5)

The components of second-order hyperpolarizability density are defined as:

$$\rho_{ijk}^{(3)}(r) = [\partial^3 \rho(r) / (\partial F_i \partial F_j \partial F_k)]_{F=0}$$
(S6)

When using a numerical derivative, the components of the second-order hyperpolarizability density, such as $\rho_{xxx}^{(3)}$, can be calculated using the following formulas:

$$\rho_{xxx}^{(3)} = \left[\rho(2F_x) - 2\rho(F_x) + 2\rho(-F_x) - \rho(-2F_x)\right] / (2F_x^3)$$
(S7)

Furthermore, the local contribution to the second-order hyperpolarizability components is defined as:

$$\gamma_{ijkl} = \int -\rho_{ijk}^{(3)}(r) l dr \tag{S8}$$

where *i*, *j*, *k* and *l* represent one of the directions $\{x, y, z\}$.

2. Results

Clusters	Symmetry	<i>E</i> (au)
S ₅	C_s	-1991.135647
S_{5}^{*}	C_s	-1991.135663
S ₆	D_{3d}	-2389.385409
S ₆ *	D_{3d}	-2389.385415
S ₇	C_s	-2787.622824
S_{7}^{*}	C_s	-2787.622796
S ₈	D_{4d}	-3185.866058
S_8^*	D_{4d}	-3185.866058
S ₉	C_2	-3584.093143
S ₉ *	C_2	-3584.093142
S ₁₀	D_2	-3982.326420
S_{10}^{*}	D_2	-3982.326421
S ₁₁	C_2	-4380.561126
S_{11}^{*}	C_1	-4380.558742
S ₁₂	D_{3d}	-4778.802658
S ₁₂ *	D_{3d}	-4778.802665

Table S1. Sum of electronic and zero-point energy (E) of sulfur clusters (I).

b). The zero-point energy has not been corrected. Vibrational frequency scaling factor is 0.965 at the B3LYP/def2-TZVP level, according to CCCBDB (https://cccbdb.nist.gov/vibscalejust.asp, Access date August 2, 2023).

Table S2. Sum of electronic and zero-point energy (E) of sulfur clusters (II).

Clusters	Symmetry	E (au)
S ₁₃	C_1	-5177.028082
S ₁₃ *	C_2	-5177.032220
S ₁₄	C_s	-5575.266790
S ₁₄ *	C_1	-5575.269151
S ₁₅	C_1	-5973.503390
S ₁₅ *	C_2	-5973.499341
S ₁₆	D_{4d}	-6371.727226
S ₁₆ *	D_{4d}	-6371.727230
S ₁₇	C_2	-6769.976591
S ₁₇ *	C_1	-6769.967317
S ₁₈	C_2	-7168.212789
S ₁₈ *	C_2	-7168.203793
S ₁₉	C_2	-7566.442150
S ₁₉ *	C_1	-7566.443632
S ₂₀	C_1	-7964.673368
S_{20}^{*}	C_I	-7964.681387

b). The zero-point energy has not been corrected. Vibrational frequency scaling factor is 0.965 at the B3LYP/def2-TZVP level, according to CCCBDB (https://cccbdb.nist.gov/vibscalejust.asp, Access date August 2, 2023).

 Table S3. Vibration frequency of sulfur clusters (I).

Clusters	Frequency (cm ⁻¹)
S ₅	91.04, 232.38, 287.41, 298.89, 334.17, 334.19, 426.24, 504.46, 510.94
S ₆	164.15, 164.21, 204.32, 204.72, 267.37, 316.92, 349.34, 436.90, 437.82, 458.68, 458.73, 479.09
S_7	55.10, 132.26, 153.78, 170.70, 196.01, 236.56, 271.08, 293.93, 340.65, 370.53, 378.62, 452.60, 483.22, 527.73, 534.26
S_8	64.89, 70.19, 146.22, 146.27, 191.06, 191.06, 215.34, 243.24, 248.57, 248.57, 389.01, 415.49, 415.49, 462.03, 462.55, 467.76, 467.76, 476.24
S ₉	45.25, 66.47, 91.49, 97.48, 143.80, 156.27, 176.39, 217.10, 218.27, 248.78, 256.69, 305.60, 387.41, 389.83, 422.86, 426.81, 453.88, 457.62, 458.48, 476.62, 480.84
S_{10}	37.47, 45.69, 68.39, 86.14, 89.54, 125.17, 137.29, 167.57, 218.44, 223.96, 224.17, 245.13, 249.23, 256.40, 375.22, 404.50, 404.62, 452.17, 456.23, 464.21, 467.23, 483.26, 484.22, 488.49
S ₁₁	38.67, 48.56, 54.51, 64.45, 90.16, 93.43, 118.82, 163.21, 170.48, 174.61, 202.04, 212.94, 233.67, 247.74, 272.48, 288.97, 385.10, 387.60, 422.00, 425.02, 445.24, 454.54, 462.11, 467.99, 483.60, 485.54, 489.70
S ₁₂	37.16, 38.98, 40.90, 41.65, 66.49, 72.62, 106.19, 141.35, 160.44, 160.54, 179.93, 179.97, 245.34, 245.99, 255.89, 256.26, 278.83, 296.06, 381.32, 401.23, 401.23, 434.56, 434.93, 459.01, 459.68, 459.93, 466.23, 466.58, 471.10, 471.23
S ₁₃	37.48, 42.08, 57.08, 60.60, 66.14, 69.38, 74.64, 117.03, 127.61, 151.17, 173.41, 175.75, 189.45, 218.48, 236.17, 238.67, 239.62, 251.06, 261.85, 308.13, 356.20, 383.13, 398.84, 409.75, 428.32, 445.76, 453.55, 460.83, 461.71, 465.72, 474.31, 493.37, 499.62
S ₁₄	20.66, 50.65, 52.19, 54.67, 59.53, 63.78, 70.83, 77.92, 125.97, 129.68, 154.80, 162.01, 173.83, 185.51, 188.96, 225.27, 235.35, 237.94, 245.59, 252.44, 258.37, 287.40, 375.30, 389.34, 393.26, 421.07, 425.74, 444.33, 452.90, 458.21, 464.02, 465.90, 466.98, 471.35, 476.25, 478.08

 Table S4. Vibration frequency of sulfur clusters (II).

b). Frequency has not been corrected. According to CCCBDB, the vibrational frequency scaling factor at the B3LYP/def2-TZVP level is 0.965.

Clusters	Frequency (cm ⁻¹)
S ₁₅	17.67, 25.49, 27.56, 47.03, 49.59, 57.85, 62.09, 66.72, 75.97, 100.63, 114.03, 153.74, 157.33, 168.90, 180.72, 189.59, 206.26, 228.46, 237.85, 245.89, 259.47, 263.52, 269.97, 301.83, 385.08, 391.50, 406.19, 407.87, 431.04, 437.94, 451.08, 454.62, 457.88, 462.04, 465.74, 469.56, 473.67, 478.44, 482.84
S ₁₆	4.77, 10.00, 24.44, 26.17, 44.94, 44.94, 45.62, 45.62, 54.20, 63.77, 88.29, 130.62, 130.62, 159.66, 170.46, 170.46, 192.06, 192.33, 207.98, 208.01, 246.13, 246.13, 246.88, 246.88, 265.35, 266.54, 380.82, 393.15, 393.15, 418.37, 419.24, 443.09, 443.09, 455.83, 460.60, 466.61, 467.92, 467.92, 469.74, 469.74, 472.85, 473.10
S ₁₇	21.95, 24.07, 38.89, 44.90, 47.90, 51.48, 52.16, 53.49, 61.86, 64.80, 74.89, 108.47, 109.20, 128.66, 140.97, 158.61, 169.63, 186.56, 208.33, 217.64, 225.36, 233.61, 252.92, 262.40, 270.21, 273.98, 281.35, 288.73, 385.21, 386.29, 402.71, 404.59, 427.33, 429.43, 449.67, 450.59, 454.24, 455.16, 459.32, 463.31, 464.36, 466.16, 472.09, 480.04, 480.21
S ₁₈	19.74, 28.70, 33.95, 37.49, 42.91, 49.60, 50.90, 60.48, 64.25, 64.54, 66.94, 87.14, 92.49, 112.95, 129.33, 156.67, 157.99, 168.69, 186.25, 197.45, 206.97, 227.34, 237.27, 248.19, 255.74, 261.27, 268.80, 277.05, 283.12, 290.30, 381.07, 389.29, 390.94, 409.90, 411.80, 431.82, 436.01, 451.86, 453.09, 459.63, 460.16, 462.51, 465.43, 465.79, 466.35, 467.36, 473.27, 473.69
S ₁₉	13.90, 19.20, 23.83, 32.73, 35.12, 44.00, 46.48, 52.20, 57.14, 63.93, 65.84, 73.88, 81.73, 88.02, 111.09, 120.37, 144.86, 155.66, 169.67, 175.64, 187.32, 196.90, 220.64, 230.89, 242.55, 253.04, 260.91, 265.26, 270.90, 272.29, 285.14, 303.09, 383.84, 385.23, 397.29, 402.00, 420.04, 423.32, 439.47, 443.55, 449.37, 454.78, 456.89, 459.86, 462.58, 465.60, 466.62, 466.96, 469.61, 478.50, 481.25
S ₂₀	24.30, 30.95, 41.25, 45.88, 46.59, 51.67, 55.52, 58.04, 60.75, 62.88, 69.13, 81.36, 87.33, 89.77, 99.82, 117.51, 130.45, 150.85, 159.64, 165.44, 173.40, 180.56, 191.76, 215.31, 223.80, 226.64, 233.82, 237.07, 238.70, 250.85, 256.66, 263.37, 265.88, 277.51, 380.46, 386.70, 390.65, 402.46, 410.72, 424.53, 426.06, 438.84, 445.06, 452.79, 458.68, 461.45, 463.90, 466.52, 468.19, 470.47, 474.24, 480.55, 481.17, 483.84

b). Frequency has not been corrected. According to CCCBDB, the vibrational frequency scaling factor at the B3LYP/def2-TZVP level is 0.965.

Table S5. Basis sets assess to evaluate the second-order hyperpolarizability of sulfur clusters.

Mathad	Dagia ant			(ou)	
Methoa	Basis set	<i>F_x=</i> -0.001au	$F_x=0$ au	<i>F_x</i> =0.001 au	γ_{xxxx} (au)
	aug-cc-pVDZ	198.0682334	198.0417312	198.0682334	5.30E+04
MP2	aug-cc-pVTZ	200.0160253	199.9875330	200.0160253	5.70E+04
	aug-cc-pVQZ	200.3876208	200.3577807	200.3876208	5.97E+04
	daug-cc-pVDZ	199.8760760	199.8443396	199.8760760	6.35E+04
	daug-cc-pVTZ	200.3369236 200.3057955		200.3369236	6.23E+04
Mathad	Desis set		α_{zz} (au)		· · · · (an)
Method	Basis set	<i>F_z=</i> -0.001au	α_{zz} (au) $F_z=0$ au	<i>F_z</i> =0.001 au	· _{yzzzz} (au)
Method	Basis set aug-cc-pVDZ	<i>F</i> _z =- 0.001au 115.4795506	α _{zz} (au) F _z =0 au 115.4691537	<i>F_z</i> = 0.001 au 115.4795724	• γ _{zzzz} (au) 2.08E+04
Method	Basis set aug-cc-pVDZ aug-cc-pVTZ	<i>F_z</i> =- 0.001au 115.4795506 117.9165769	α _{zz} (au) <i>F_z</i> =0 au 115.4691537 117.9034754	<i>F_z</i> =0.001 au 115.4795724 117.9166002	- γ _{zzzz} (au) 2.08E+04 2.62E+04
Method MP2	Basis setaug-cc-pVDZaug-cc-pVTZaug-cc-pVQZ	<i>F_z</i> =-0.001au 115.4795506 117.9165769 118.1824699	α _{zz} (au) <i>F</i> _z =0 au 115.4691537 117.9034754 118.1676215	<i>F_z</i> =0.001 au 115.4795724 117.9166002 118.1824941	- γ _{zzzz} (au) 2.08E+04 2.62E+04 2.97E+04
Method MP2	Basis setaug-cc-pVDZaug-cc-pVTZaug-cc-pVQZdaug-cc-pVDZ	Fz=-0.001au 115.4795506 117.9165769 118.1824699 118.1451105	α _{zz} (au) F _z =0 au 115.4691537 117.9034754 118.1676215 118.1282871	<i>F</i> _z =0.001 au 115.4795724 117.9166002 118.1824941 118.1451356	y _{zzzz} (au) 2.08E+04 2.62E+04 2.97E+04 3.37E+04

a). S₈ cluster serve as the evaluated system; energies were converged to 1×10^{-6} Ha; gamma components were calculated using the finite-field method.

b). Given the symmetry of S₈ cluster, the values of γ_{xxxx} and γ_{yyyy} are exactly the same, so the γ_{yyyy} is not listed here.

Table S6. Functionals assess to evaluate the second-order hyperpolarizability of sulfur clusters (I).

		F _x (-0.001 au)	$F_x(0 au)$	F_x (0.001 au)	
	α_{xx}	199.8760760	199.8443396	199.8760760	6.35E+04 (γ _{xxxx})
	α_{yy}	199.8549156	199.8443396	199.8549156	2.12E+04 (y _{yyxx})
	α_{zz}	118.1347540	118.1282871	118.1347540	1.29E+04 (y _{zzxx})
MP2		F _z (-0.001 a.u.)	F_z (0 au)	F _z (0.001 au)	
	α_{xx}	199.8507946	199.8443396	199.8508123	1.29E+04 (<i>y</i> _{xxzz})
	α_{yy}	199.8507946	199.8443396	199.8508123	1.29E+04 (y _{yyzz})
	α_{zz}	118.1451105	118.1282871	118.1451356	3.37E+04 (y _{zzzz})

a). S₈ cluster serve as the evaluated system; energies were converged to 1×10^{-6} Ha; gamma components were calculated using the finite-field method; polarizability and second-order hyperpolarizability values are expressed in atomic units.

b). In the calculation, MP2 method was combined with daug-cc-pVDZ basis set.

c). Given the symmetry, S₈ cluster responds equally to the electric field along the *x* and *y* directions, so γ_{yyxx} , γ_{yyyy} , and γ_{zzyy} are not listed.

Table S7. Functionals assess to evaluate the second-order hyperpolarizability of sulfur clusters

1	TT)
C	п	.).

	MP2	PBE0	Error	PBE30	Error	PBE35	Error
Y xxxx	6.35E+04	6.31E+04	-0.57%	5.95E+04	-6.26%	5.61E+04	-11.58%
γ _{yyxx}	2.12E+04	2.10E+04	-0.48%	1.98E+04	-6.19%	1.87E+04	-11.52%
Yzzxx	1.29E+04	1.23E+04	-4.68%	1.17E+04	-9.88%	1.10E+04	-14.69%
Yxxzz	1.29E+04	1.23E+04	-4.63%	1.17E+04	-9.84%	1.10E+04	-14.65%
<i>Yyyzz</i>	1.29E+04	1.23E+04	-4.63%	1.17E+04	-9.84%	1.10E+04	-14.65%
Yzzzz	3.37E+04	3.01E+04	-10.57%	2.86E+04	-15.14%	2.71E+04	-19.40%
Yave	5.10E+04	4.96E+04	-2.75%	4.68E+04	-8.19%	4.42E+04	-13.27%

a). S₈ cluster serve as the evaluated system; second-order hyperpolarizability values are expressed in atomic units.

b). In the calculation, MP2 and DFT methods were combined with daug-cc-pVDZ basis set.

c). PBE30 (30% HF exchange, 70% PBE GGA exchange, and PBE GGA correlation); PBE35 (35% HF exchange, 65% PBE GGA exchange, and PBE GGA correlation)

Table S8. Functionals assess to evaluate the second-order hyperpolarizability of sulfur clusters

		F _x (-0.001 au)	$F_x(0 au)$	F_x (0.001 au)	
-	α_{xx}	437.6345231	437.5435950	437.6345231	1.82E+05 (γ_{xxxx})
	α_{yy}	437.5738942	437.5435950	437.5738942	6.06E+04 (γ_{yyxx})
	α_{zz}	255.0674827	255.0519605	255.0674827	3.10E+04 (<i>y</i> _{zzxx})
MP2		F _z (-0.001 a.u.)	F_z (0 au)	F_z (0.001 au)	
	α_{xx}	437.5591051	437.5435950	437.5591188	3.10E+04 (y _{xxzz})
	$lpha_{yy}$	437.5591051	437.5435950	437.5591188	3.10E+04 (y _{yyzz})
	α_{zz}	255.0825735	255.0519605	255.0825869	6.12E+04 (y _{zzzz})

a). S_{16} cluster serve as the evaluated system; energies were converged to 1×10^{-6} Ha; gamma components were calculated using the finite-field method; polarizability and second-order hyperpolarizability values are expressed in atomic units.

b). In the calculation, MP2 method was combined with daug-cc-pVDZ basis set.

c). Given the symmetry, S_{16} cluster responds equally to the electric field along the *x* and *y* directions, so γ_{yyyx} , γ_{yyyy} , and γ_{zzyy} are not listed.

Table S9. Functionals assess to evaluate the second-order hyperpolarizability of sulfur clusters

ſ	T	V	J	
L	T	v	,	•

	MP2	PBE0	Error	PBE30	Error	PBE35	Error
Y xxxx	1.82E+05	2.22E+05	21.92%	2.04E+05	12.05%	1.88E+05	3.15%
Yyyxx	6.06E+04	7.39E+04	21.91%	6.79E+04	12.02%	6.25E+04	3.12%
Yzzxx	3.10E+04	3.08E+04	-0.66%	2.89E+04	-6.75%	2.72E+04	-12.37%
Yxxzz	3.10E+04	3.08E+04	-0.62%	2.89E+04	-6.72%	2.72E+04	-12.34%
Yyyzz	3.10E+04	3.08E+04	-0.62%	2.89E+04	-6.72%	2.72E+04	-12.34%
Yzzzz	6.12E+04	5.74E+04	-6.25%	5.43E+04	-11.37%	5.14E+04	-16.10%
Yave	1.34E+05	1.54E+05	15.16%	1.43E+05	6.42%	1.32E+05	-1.49%

a). S₁₆ cluster serve as the evaluated system; second-order hyperpolarizability values are expressed in atomic units.

b). In the calculation, MP2 and DFT methods were combined with daug-cc-pVDZ basis set.

c). PBE30 (30% HF exchange, 70% PBE GGA exchange, and PBE GGA correlation); PBE35 (35% HF exchange, 65% PBE GGA exchange, and PBE GGA correlation)

Clusters	Y xxxx	Y yyyy	Yzzzz	Yave	Volume	Factor
S_5	3.22E+04	3.79E+04	2.14E+04	3.07E+04	144.96	211.80
S_6	3.67E+04	3.80E+04	2.68E+04	3.31E+04	171.36	193.04
S_7	5.99E+04	4.60E+04	2.46E+04	4.31E+04	199.34	216.26
S_8	5.95E+04	5.95E+04	2.86E+04	4.68E+04	229.33	203.97
S_9	7.14E+04	6.82E+04	3.27E+04	5.65E+04	254.19	222.29
\mathbf{S}_{10}	9.68E+04	6.99E+04	3.67E+04	6.57E+04	284.22	231.10
S_{11}	1.02E+05	7.30E+04	4.32E+04	7.24E+04	310.81	232.91
S ₁₂	1.02E+05	1.02E+05	4.22E+04	7.99E+04	343.02	232.81
S ₁₃	1.01E+05	9.44E+04	5.18E+04	8.37E+04	362.82	230.58
\mathbf{S}_{14}	1.11E+05	8.93E+04	6.04E+04	8.89E+04	391.50	227.12
S ₁₅	1.46E+05	1.28E+05	5.56E+04	1.06E+05	423.33	250.21
S ₁₆	2.04E+05	2.04E+05	5.43E+04	1.43E+05	459.00	310.76
\mathbf{S}_{17}	2.33E+05	1.03E+05	6.44E+04	1.29E+05	478.07	270.49
\mathbf{S}_{18}	2.58E+05	1.31E+05	6.92E+04	1.44E+05	505.59	285.61
S ₁₉	2.93E+05	1.56E+05	6.54E+04	1.59E+05	532.44	298.34
S_{20}	1.83E+05	1.33E+05	9.81E+04	1.38E+05	550.23	250.19

a). Second-order hyperpolarizabilities were calculated at the PBE30/daug-cc-pVDZ level.

b). Second-order hyperpolarizability values, volume of clusters, and second-order hyperpolarizability factor units are au, Å³, and au Å⁻³.

 Table 11. Static second-order hyperpolarizability of sulfur clusters (II).

Clusters	γ _{xxxyy}	Yxxzz	γ_{yyzz}
S_5	1.11E+04	1.02E+04	9.75E+03
S_6	1.26E+04	9.94E+03	9.44E+03
\mathbf{S}_7	2.01E+04	1.13E+04	1.11E+04
\mathbf{S}_{8}	1.98E+04	1.17E+04	1.17E+04
S_9	2.23E+04	1.78E+04	1.50E+04
S_{10}	2.69E+04	1.68E+04	1.88E+04
S_{11}	3.13E+04	2.14E+04	1.92E+04
S_{12}	3.40E+04	2.12E+04	2.13E+04
S ₁₃	3.58E+04	2.59E+04	2.37E+04
S_{14}	3.74E+04	2.88E+04	2.57E+04
S ₁₅	4.45E+04	2.87E+04	2.69E+04
S_{16}	6.79E+04	2.89E+04	2.89E+04
S ₁₇	5.58E+04	3.92E+04	2.79E+04
\mathbf{S}_{18}	6.00E+04	4.03E+04	3.14E+04
S_{19}	6.84E+04	3.98E+04	3.18E+04
S_{20}	5.46E+04	4.19E+04	4.06E+04

a). Second-order hyperpolarizabilities were calculated at the PBE30/daug-cc-pVDZ level.

b). Second-order hyperpolarizability values, volume of clusters, and second-order hyperpolarizability factor units are au, $Å^3$, and au $Å^{-3}$.

c). The values of γ_{xxyy} and γ_{yyxx} , γ_{xxzz} and γ_{zzxx} , γ_{yyzz} and γ_{zzyy} are the same, so the γ_{yyxx} , γ_{zzxx} , and γ_{zzyy} are not listed.

Figure S1. Simulated ultraviolet spectra of odd-numbered sulfur clusters (S_{2n+1} , where n=2–9).

Figure S2. Local contribution to the first-order hyperpolarizability β_{xxx} of S₈ cluster. Note: cyan and magenta represent positive and negative regions, respectively; the values of isosurface is 1 au; the $\beta_{xxx}(+)$ and $\beta_{xxx}(-)$ represent the positive and negative contribution to first-order hyperpolarizability β_{xxx} , respectively; the values of $\beta_{xxx}(+)$ and $\beta_{xxx}(-)$ are 1584.3 and -1584.4 au, respectively.

Figure S3. Electron localization function of S_8 cluster.

Figure S4. Three-dimensional visualization of the second-order hyperpolarizability tensor of oddnumbered sulfur clusters (S_{2n+1}, where n=2–9). Note: the color of the arrows on the sphere varies from blue to white to red, with shorter arrows becoming bluer and longer arrows becoming redder, and the actual length of the arrows corresponds to modulus of the $\gamma_{eff}(\theta, \Phi)$ vector multiplied by a factor. Here, the longest arrow on each sphere is forced the same length for aesthetics, which means the $\gamma_{eff}(\theta, \Phi)$ vector of various sulfur clusters are multiplied various coefficients.

Figure S5. External electric field (along the z direction) with various field strength tunning the second-order hyperpolarizability of S_8 cluster.

Figure S6. External electric field (along the *x* and *z* directions, respectively) with various field strength tunning the bandgap of S_8 cluster.

References

- 1 Y. R. Shen, The Principles of Nonlinear Optics, John Wiley & Sons, New York, 1984.
- 2 R. W. Boyd, Nonlinear Optics, Academic Press, San Diego, 1992.
- 3 M. G. Papadopoulos, A. J. Sadlej and J. Leszczynski, Non-Linear Optical Properties of Matter, Springer, Dordrecht, 2006.
- 4 M. T. Zhao, B. P. Singh and P. N. Prasad, J. Chem. Phys., 1988, 89, 5535.
- 5 M. Nakano, I. Shigemoto, S. Yamada and K. Yamaguchi, *J. Chem. Phys.*, 1995, **103**, 4175–4191.
- 6 S. Yamada, M. Nakano, I. Shigemoto, S. Kiribayashi and K. Yamaguchi, *Chem. Phys. Lett.*, 1997, **267**, 445–451.
- 7 H. Wu, A. Chaudhari and S. Lee, J. Comput. Chem., 2005, 26, 1543–1564.