Strain-tunable magnetism and topological states in layered VBi₂Te₄

Yaling Zhang^a, Yingying Wang^a, Wenjia Yang^a, Huisheng Zhang^{*a,b}, and Jianfeng

Jia*a

^aCollege of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan 030006, China

^bCollege of Physics and Electronic Information, Shanxi Normal University, Taiyuan 030006,

China

Email: hszhang@sxnu.edu.cn;jiajf@sxnu.edu.cn

Supplementary figures and captions

Fig. S1 Calculated phonon spectra of bulk (a) and monolayered (b) VBi₂Te₄ (VBT).

Fig. S2 Ab initio molecular dynamics simulations of a VBT monolayer at 300 K. The insets display the final structure after 20 ps.

Fig. S3 Band structures of antiferromagnetic VBT, without (a) and with spin-orbit (SOC). Here, the projected bands of Bi- p_z and Te- p_z are also given. (c) The corresponding Z_2 invariant of $k_3 = 0.0$ plane. (d) Calculated edge states.

Fig. S4 The electronic band structures of antiferromagnetic VBT (a) and MnBi₂Te₄ (MBT) (b) calculated by HSE06 functional, respectively. Here, SOC is included, and the calculated Z_2 invariant of VBi₂Te₄ and MnBi₂Te₄ respectively are 1 and 0.

Fig. S5 The electronic band structures of ferromagnetic VBT (a) and MBT (b) calculated by HSE06 functional, respectively. The calculated Chern number (C) of VBT and MBT respectively are 0 and 1.

Table S1 Calculated the magnetic anisotropy energy (MAE), nearest magnetic coupling parameter J_N , and estimated Curie temperature (T_c) of VBT monolayer under strain. Here, "-" and "+" denote compressed and tensile strain, respectively. MAE is defined by MAE = E_{\perp} - E_{\parallel} , with E_{\perp} and E_{\parallel} denoting the total energies associated with the magnetic moment perpendicular and parallel to the plane of the 2D materials, respectively.

VBT monolayer	MAE (meV)	$J_{\rm N}({\rm meV})$	<i>T</i> _c (K)
-5%	0.157	-0.171	8
-3%	0.115	-0.354	13
-1%	0.111	-0.586	20
0	0.181	-0.608	21
+1%	0.118	-0.795	26
+3%	0.125	-0.776	25
+5%	0.130	-0.819	28