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Figure 1: Two-body SAPT(DFT) energy decompositions along the radial benchmark po-
tential energy curves for the ammonium-benzene-water complex 4.1. They are obtained by
shifting C6H6 relative to the center of mass of the entire complex. The relative geometry of
the other two molecules stays unchanged.
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Figure 2: Two-body SAPT(DFT) energy decompositions along the radial benchmark po-
tential energy curves for the ammonium-benzene-water complex 4.1. They are obtained by
shifting NH+

4 relative to the center of mass of the entire complex. The relative geometry of
the other two molecules stays unchanged.
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Figure 3: Two-body SAPT(DFT) energy decompositions along the radial benchmark po-
tential energy curves for the ammonium-benzene-water complex 4.1. They are obtained by
shifting H2O relative to the center of mass of the entire complex. The relative geometry of
the other two molecules stays unchanged.
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Figure 4: Two-body SAPT(DFT) energy decompositions along the radial benchmark po-
tential energy curves for the ammonium-benzene-water complex 4.2. They are obtained by
shifting C6H6 relative to the center of mass of the entire complex. The relative geometry of
the other two molecules stays unchanged.
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Figure 5: Two-body SAPT(DFT) energy decompositions along the radial benchmark po-
tential energy curves for the ammonium-benzene-water complex 4.2. They are obtained by
shifting NH+

4 relative to the center of mass of the entire complex. The relative geometry of
the other two molecules stays unchanged.
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Figure 6: Two-body SAPT(DFT) energy decompositions along the radial benchmark po-
tential energy curves for the ammonium-benzene-water complex 4.2. They are obtained by
shifting H2O relative to the center of mass of the entire complex. The relative geometry of
the other two molecules stays unchanged.
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Figure 7: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the iodomethane-formaldehyde-water complex 1.1. They are obtained
by shifting HCHO relative to the center of mass of the entire complex. The relative geometry
of the other two molecules stays unchanged.
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Figure 8: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the iodomethane-formaldehyde-water complex 1.1. They are obtained
by shifting H2O relative to the center of mass of the entire complex. The relative geometry
of the other two molecules stays unchanged.
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Figure 9: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the iodomethane-formaldehyde-water complex 1.1. They are obtained
by shifting CH3I relative to the center of mass of the entire complex. The relative geometry
of the other two molecules stays unchanged.
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Figure 10: Two-body SAPT(DFT) energy decompositions along the radial benchmark po-
tential energy curves for the iodomethane-formaldehyde-water complex complex 1.2. They
are obtained by shifting HCHO relative to the center of mass of the entire complex. The
relative geometry of the other two molecules stays unchanged.
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Figure 11: Two-body SAPT(DFT) energy decompositions along the radial benchmark po-
tential energy curves for the iodomethane-formaldehyde-water complex complex 1.2. They
are obtained by shifting H2O relative to the center of mass of the entire complex. The relative
geometry of the other two molecules stays unchanged.
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Figure 12: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the iodomethane-formaldehyde-water complex 1.2. They are obtained
by shifting CH3I relative to the center of mass of the entire complex. The relative geometry
of the other two molecules stays unchanged.
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Figure 13: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the water-water-methanol 3.1. They are obtained by shifting CH3OH
relative to the center of mass of the entire complex. The relative geometry of the other two
molecules stays unchanged.
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Figure 14: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the water-water-methanol 3.1. They are obtained by shifting H2O(a)
relative to the center of mass of the entire complex. The relative geometry of the other two
molecules stays unchanged.
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Figure 15: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the water-water-methanol 3.1. They are obtained by shifting H2O(b)
relative to the center of mass of the entire complex. The relative geometry of the other two
molecules stays unchanged.
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Figure 16: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the water-water-methanol 3.2. They are obtained by shifting CH3OH
relative to the center of mass of the entire complex. The relative geometry of the other two
molecules stays unchanged.
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Figure 17: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the water-water-methanol 3.2. They are obtained by shifting H2O(a)
relative to the center of mass of the entire complex. The relative geometry of the other two
molecules stays unchanged.
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Figure 18: Two-body SAPT(DFT) energy decompositions along the radial benchmark poten-
tial energy curves for the water-water-methanol 3.2. They are obtained by shifting H2O(b)
relative to the center of mass of the entire complex. The relative geometry of the other two
molecules stays unchanged.
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