Electronic Supporting Information

Probing the Site-Selective Doping and Charge Compensating Defects in KMgF₃: Insights from a Hybrid DFT Study

Pampa Modak^{1, 2} Brindaban Modak*, ^{2,3} A. Arya**^{2,4}

¹RSD, Atomic Energy Regulatory Board, ² Homi Bhabha National Institute, Mumbai 400 094

³Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai

400 085, India

⁴Glass & Advanced Materials Division, Bhabha Atomic Research Centre,

Mumbai 400 085

*Email: bmodak@barc.gov.in

**Email: aarya@barc.gov.in

Phone: 91-22-25599023 Fax: 91-22-25505151

 d_{Mg-F} (Å) Cell Cell d_{K-F} (Å) System d_{Eu-F} (Å) d_{Li-F} Volume Parameter (Å) (Å) $(Å^3)$ 1764 2.01 2.85 KMgF₃ 12.08 --1.99-2.03 2.74 Eu_{K} -KMgF₃ 12.10 1772 2.82---2.88 Eu_K¹⁺-KMgF₃ 1749 2.81-2.87 12.05 1.98-2.02 2.73 -- $Eu_{K}^{2+}-KMgF_{3}$ 12.01 1733 1.97-2.03 2.81-2.87 2.58 --Eu_{Mg}-KMgF₃ 12.13 1785 1.88-2.04 2.80 2.26 --2.90 2.26 2.93 Eu_{Mg}¹⁺-KMgF₃ 12.09 1768 1.93-2.02 2.72 2.17 --2.86 2.17 2.97 $Eu_K + V_{Mg}$ -12.08 1762 1.94-2.05 2.78 2.23 --KMgF₃ 2.82 2.69 2.87 $(Eu_{K}+V_{Mg})^{1+}$ -12.10 1774 1.97 2.23 2.82 --KMgF₃ 1.99 2.85 2.70 2.05 2.87 $(Eu_{K}+V_{Mg})^{1}-$ 1795 2.26 12.15 1.95 2.81 --KMgF₃ 2.01 2.88 2.80 2.06 2.89 (Eu_K+2V_K) -12.04 1745 1.96 2.81 2.56 --2.00 2.85 2.73 KMgF₃ 2.05 3.09 2.48 $(Eu_{K}+2V_{K})^{1+}$ -12.03 1739 1.96 2.80 2.46 --KMgF₃ 1.99 2.84 2.55 2.05 3.09 2.76 $(Eu_{K}+2V_{K})^{1}$ --12.14 1789 2.00 2.83 2.59 --KMgF₃ 2.01 2.87 2.78 3.04 2.03 $(Eu_{Mg}-V_K)-$ 12.12 1781 2.20 1.94 2.83 --KMgF₃ 2.01 2.89 2.14 2.05 2.93 12.11 1774 (Eu_{Mg}-1.94 2.81 2.19 -- V_K)¹⁺KMgF₃ 2.01 2.86 2.14 2.89 2.05 $(Eu_{Mg}-V_K)^{1-}$ 12.17 1802 1.95 2.81 2.18 ---KMgF₃ 1.97 2.89 2.29 2.07 2.82 12.08 1762 1.98 2.37 1.96 Eu_K-Li_{Mg} 2.76 2.75 2.18 2.01 2.86

Table S1: Variation of Structural Parameter for Eu-doped KMgF₃ using 3 × 3× 3 supercell

			2.03	3.02		
$(Eu_{K}-Li_{Mg})^{1+}$	12.05	1747	1.96	3.09	2.63	1.93
			2.00	2.85	2.32	2.21
			2.04	2.77		
Eu _K -Li _{Mg} -V _K	12.06	1753	1.97	2.77	2.48	1.95
			2.00	2.87	2.75	2.18
			2.03	2.89		
(Eu _K -Li _{Mg} -	12.03	1741	1.97	2.77	2.37	1.96
$(V_{K})^{1+}$			2.00	2.87	2.46	2.13
			2.03	3.10	2.75	
(Eu _K -Li _{Mg} -	12.09	1768	1.99	2.83	2.38	1.97
$(V_{K})^{1-}$			2.04	2.86	2.60	2.19
				3.07	2.74	
Eu _{Mg} -Li _K	12.13	1785	1.94	2.85	2.17	2.10
_			2.02	2.28	2.28	
			2.06			
$(Eu_{Mg}-Li_K)^{1+}$	12.11	1775	1.94	2.85-	2.15-	1.95
			2.00	2.87	2.18	
			2.05			
$(Eu_{Mg}-Li_K)^{1-}$	12.17	1803	1.95	2.82-	2.18-	2.22
_			2.05	2.87	2.35	

System	Bader Charge		
KMgF ₃			
Eu _K -KMgF ₃	1.66		
Eu _K ¹⁺ -KMgF ₃	1.68		
Eu _K ²⁺ -KMgF ₃	2.21		
Eu _{Mg} -KMgF ₃	1.67		
Eu _{Mg} ¹⁺ -KMgF ₃	2.16		
Eu _K +V _{Mg} - KMgF ₃	2.16		
$(Eu_K+V_{Mg})^{1+}$ - KMgF ₃	2.18		
$(Eu_K+V_{Mg})^{1}$ - KMgF ₃	1.68		
(Eu_K+2V_K) - KMgF ₃	2.21		
$(Eu_K+2V_K)^{1+}$ - KMgF ₃	2.27		
$(Eu_K+2V_K)^{1}$ - KMgF ₃	1.70		
(Eu _{Mg} -V _K)-KMgF ₃	2.15		
$(Eu_{Mg}-V_K)^{1+}KMgF_3$	2.27		
$(Eu_{Mg}-V_K)^{1}-KMgF_3$	1.70		
Eu _K -Li _{Mg}	1.66		
$(Eu_K-Li_{Mg})^{1+}$	2.18		
Eu _K -Li _{Mg} -V _K	2.19		
$(Eu_K-Li_{Mg}-V_K)^{1+}$	2.26		
$(Eu_K-Li_{Mg}-V_K)^{1-}$	1.67		
Eu _{Mg} -Li _K	1.67		
$(Eu_{Mg}$ - $Li_K)^{1+}$	2.14		
$(Eu_{Mg}-Li_K)^{1-}$	1.57		

Table S2: Variation of Bader Charge on the Eu-Center

Fig. S1: Alignment of different energy levels for Eu-doped KMgF₃ in the presence of different defects.

Fig. S2: Alignment of different energy levels for Eu-doped KMgF₃ in the presence of different defects including spin–orbit coupling.