Supplementary Information for

High-throughput computational materials screening of transition

metal peroxides

Yin-Hui Peng,¹Chang-Chun He, ¹Yu-Jun Zhao,¹ and Xiao-Bao Yang^{1,a}

School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China. E-mail:scxbyang@scut.edu.cn

Phase	Lattice Parameters (Å)	Atomic coordinates (fractional)			
$\operatorname{ScO}_2[P2_l/c]$	a = 3.724, b =5.838, c =5.902	Sc	0.028	0.224	0.839
	$\alpha = 92.718, \beta = \gamma = 90.000$	01	0.460	0.859	0.317
		02	0.845	0.548	0.440
TiO ₃ [Pmmn]	a = 2.948, b =3.948, c =7.113	Ti	0.000	0.500	0.350
	$\alpha = \beta = \gamma = 90.000$	01	0.500	0.500	0.545
		02	0.000	0.184	0.818

Table S1. Detailed structural information of the ScO_2 and TiO_3 .

Phase	Atom	Charge	$\sigma(e)$
$\operatorname{ScO}_2[P2_l/c]$	Sc	1.22	-1.78
	01	7.16	1.16
	O2	6.62	0.62
TiO ₃ [Pmmn]	Ti	2.12	-1.88
	01	6.98	0.98
	O2	6.45	0.45

Table S2. Residual charges on metal and O atoms based on the Bader charge analysis in ScO_2 and TiO_3 . The positive and negative values of σ represent the number of charges gained and lost by the atom.

Fig. S1. (a), (b) The formation enthalpy of various Sc-O and Ti-O compounds.

Fig. S2 (a), (b) Fluctuations of total energy and temperature with respect to AIMD steps at 500 K for ScO₂ and TiO₃. (c) Calculated cleavage energy of monolayer TiO₃ compared with the cleavage energy of monolayer graphene. (d) Negative crystal orbital Hamilton population (-COHP) of average $O_2^2 - O_2^2$, $Ti^{4+} - O^{2-}$, $Ti^{4+} - O_2^2$, $Sc^{3+} - O_2^2$ and $Sc^{3+} - O^{2-}$ bonds in the bulk ScO₂ and single layered TiO₃.

Fig. S3 (a) The average formation energy ΔE_{V_0} varies with oxygen vacancy concentration for the 2 $\times 2 \times 1$, $\sqrt{5} \times \sqrt{5} \times 1$, and $3 \times 3 \times 1$ supercell of TiO₃. (b) The average formation energy ΔE_{V_0} varies with oxygen vacancy concentration for $2 \times 2 \times 1$ supercell of ScO₂. The right part indicates that the defect structure exhibits a higher degree of distortion.