Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Electronic Supplementary Information for

Magnetic semiconducting borophenes and their derivatives

Bo Chen,* Lin Xue, Yan Han, Zhi Yang and Yong-Jia Zhang College of Physics, Taiyuan University of Technology, Taiyuan 030024, P. R. China Corresponding author Email: chenbo@tyut.edu.cn

Figure S1. (a-b) Optimized structures and (c-d) corresponding spin charge density distributions of B₃ and B₁₅ triangular motifs. The red/blue color denotes electron spin up/down, respectively.

Figure S2. Total energies of 2×2 supercells for FM B_{3-15}^1 and B_{15-15}^1 monolayers versus the energy cutoff.

Figure S3. Geometric structures for 2×2 supercells of monolayer $B_{3:15}^{1}$ in AFM and NM configurations, and their corresponding relative energies with respect to the FM state shown in the left panel of Fig. 1 in the main text.

Figure S4. Geometric structures for 2×2 supercells of monolayer B_{15-15}^1 in AFM and NM configurations, and their corresponding relative energies with respect to the FM state shown in the right panel of Fig. 1 in the main text.

Figure S5. (a) Band structure, total density of states (TDOS), and (b) phonon spectrum for monolayer B¹₃₋₁₅ with NM ordering. The Fermi level in (a) is set to zero.

Figure S6. (a) Band structure, TDOS, and (b) phonon spectrum for monolayer B¹₁₅₋₁₅ with NM ordering. The Fermi level in (a) is set to zero.

Figure S7. Band structures and TDOS of (a) hole doped and (b) electron doped FM B_{3-15}^1 monolayer, calculated at the PBE level of theory. The doping concentration is -0.5*e*/0.5*e* per primitive cell for hole/electron doping. Fermi energy is set to zero.

Figure S8. Band structures and TDOS of hole doped FM $B_{15:15}^1$ monolayer, calculated at the PBE level of theory. The doping concentration is -*e* per primitive cell. Fermi energy is set to zero.

Figure S9. Projected density of states (PDOS) for monolayer (a) B_{3-15}^{1} and (b) B_{15-15}^{1} at FM ground state. Fermi level is set as zero.

Figure S10. Top view of the initial and optimized structures for monolayer B_{3-15}^0 and B_{15-15}^0 .

Figure S11. Schematics of the high-symmetry stackings in bilayer B_{3-15}^1 . Different boron atomic layers are distinguished by color.

Figure S12. Schematics of the high-symmetry stackings in bilayer B¹₁₅₋₁₅. Different boron atomic layers are distinguished by color.

Figure S13. Manufacture processes of the B_{231} (up panel) and B_{132} (lower panel) fullerenes.

Figure S14. (a) Snap shot of B₁₃₂ fullerene at the end of *ab initio* molecular dynamics simulation performed at 300 K for 5 ps, and (b) the corresponding change of total magnetic moment with simulation time step.

Figure S15. Optimized structures of (a) zigzag (3,0) nanotube with magnetic moment of about 6.00 $\mu_{\rm B}$ per primitive cell, (b) B₁₄₇ and B₈₄ fullerenes with total magnetic moment of 6.48 and 2.00 $\mu_{\rm B}$, respectively. Nanotube and fullerenes are built based on the monolayer B¹₃₋₁₅ borophene.

Similarly, magnetic B_{63m+21} fullerenes could be constructed via capping the zigzag (3,0) nanotube with one B_{15} triangular motif, one B_3 triangular motif, and three boron atoms, where m is a positive integer and the number of half of the primitive cell of zigzag (3,0) nanotube built based on the monolayer $B_{3,15}^1$ borophene.

Figure S16. Schematic illustration of the e-beam fabrication of monolayer $B_{3,15}^1$ and $B_{15,15}^1$ borophenes by selective sputtering the boron atoms from a freestanding borophene in buckled triangular structure.