Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Electronic Supporting Information

Sodium Catalytic Phenylpentazole Cracking: A Theoretical Study

Content

Fig. S1 The three reaction paths during single-atom Na catalytic C₆H₅N₅ cracking process.

Fig. S2 The front-line orbital morphology of all compounds for catalytic C₆H₅N₅ cracking by single-atom Na.

Fig. S3 Geometric parameters of N₂ adsorption on Na(111) surface [Bond length in nm].

Fig. S4 The DOS of the Na(111), C₆H₅N₅-Na(111), PB1, PB2, and PB3.

Fig. S5 The PDOS of five N atoms in the $C_6H_5N_5$ -Na(111).

Fig. S6 The PDOS of five N atoms in the PB1.

Fig. S7 The PDOS of five N atoms in the PB2.

Fig. S8 The PDOS of five N atoms in the PB3.

Fig. S9 The configuration diagram of a hydrogen bond between $C_6H_5N_5$ and a THF molecule. In (a), one hydrogen bond is O in THF and H in the benzene ring to form O-H bond, the other is methylene H in THF and N to form N-H bond, and both hydrogen bonds in (b) are N-H bonds.

Fig. S10 Geometric parameters of the Na(111) surface catalytic $C_6H_5N_5$ cracking to release N_2 under an explicit solvent model(in GGA-PW91 level) [Bond length in nm].

Fig. S11 Geometric parameters of all compounds on the $C_6H_5N_5$ pyrolysis to release N_2 without catalyst [Bond length in nm].

Fig. S12 The front-line orbital morphology of all compounds on the C₆H₅N₅ pyrolysis to release N₂ without catalyst.

Table S1 The charge (in e) of some atoms and groups in compounds during single-atom Na catalytic $C_6H_5N_5$ cracking process.

Table S2 Relative energies $[E_{rel}/(kal/mol)]$ and frequencies $v(cm^{-1})$ of the reaction paths during catalytic C₆H₅N₅ cracking reaction by single-atom Na.

Table S3 Total energy [E(a.u)] and adsorption energy of C₆H₅N₅ at various adsorption sites on Na(111) surface under gas phase and COSMO conditions.

Table S4 Total energy [E(a.u)] and adsorption energy $[E_{ads}/(eV)]$ of N₂ at various adsorption sites on Na(111) surface under gas phase conditions.

Table S5 Relative energies $[E_{rel}/(kcal/mol)]$ of the released N₂ reaction paths.

Table S6 Relative energies $[E_{rel}/(kal/mol)]$ and frequencies $v(cm^{-1})$ of the reaction paths during C₆H₅N₅ cracking reaction.

Fig. S1 The three reaction paths during single-atom Na catalytic C₆H₅N₅ cracking process.

Fig. S2 The front-line orbital morphology of all compounds for catalytic C₆H₅N₅ cracking by single-atom Na.

Fig. S3 Geometric parameters of N₂ adsorption on Na(111) surface [Bond length in nm].

Fig. S4 The PDOS of the Na(111), C₆H₅N₅-Na(111), PB1, PB2, and PB3.

Fig. S5 The PDOS of five N atoms in the $C_6H_5N_5$ -Na(111).

Fig. S6 The PDOS of five N atoms in the PB1.

Fig. S7 The PDOS of five N atoms in the PB2.

Fig. S8 The PDOS of five N atoms in the PB3.

Fig. S9 The configuration diagram of a hydrogen bond between $C_6H_5N_5$ and a THF molecule. In (a), one hydrogen bond is O in THF and H in the benzene ring to form O-H bond, the other is methylene H in THF and N to form N-H bond, and both hydrogen bonds in (b) are N-H bonds.

Fig. S10 Geometric parameters of the Na(111) surface catalytic $C_6H_5N_5$ cracking to release N_2 under an explicit solvent model(in GGA-PW91 level) [Bond length in nm].

Fig. S11 Geometric parameters of all compounds on the $C_6H_5N_5$ pyrolysis to release N_2 without catalyst [Bond length in nm].

Fig. S12 The front-line orbital morphology of all compounds on the $C_6H_5N_5$ pyrolysis to release N_2 without catalyst.

process.							
Species	C1	N1	N2	N3	N4	N5	Na
C ₆ H ₅ N ₅	0.197	-0.025	-0.088	-0.060	-0.060	-0.088	-
IMA	0.108	-0.012	-0.134	-0.085	-0.201	-0.236	0.588
TSA1	-0.034	-0.081	-0.069	-0.069	-0.143	-0.143	0.416
PA1	-0.089	-0.121	-0.123	-0.121	-0.213	-0.214	0.787
TSA2	0.141	-0.088	-0.061	-0.084	-0.104	-0.212	0.363
PA2	0.027	-0.159	0.039	-0.142	-0.082	-0.098	0.252
TSA3	0.148	-0.072	-0.111	-0.130	0.077	-0.326	0.413
PA3	0.055	-0.034	-0.139	-0.192	0.177	-0.235	0.244

Table S1 The charge (in e) of some atoms and groups in compounds during single-atom Na catalytic $C_6H_5N_5$ cracking process.

Table S2 Relative energies $[E_{rel}/(kcal/mol)]$ and frequencies $v(cm^{-1})$ of the reaction paths during catalytic C₆H₅N₅ cracking reaction by single-atom Na.

Species	Gas		COSMO	
	$E_{rel}(\text{kcal/mol})^*$	$v(cm^{-1})$	E_{rel} (kcal/mol)**	$v(\text{cm}^{-1})$
IMA	-18.6	-	-10.8	-
TSA1	3.6	-146.9	11.8	-169.4
PA1	-0.3	-	0.5	-
TSA2	-16.3	-411.4	-6.5	-413.6
PA2	-54.1	-	-49.5	-
TSA3	-18.4	-466.2	-6.6	-392.6
PA3	-35.1	-	-34.6	-

*The relative reference data is $E_0(Gas)$ =-666.241883 a.u., and $E_0(Gas)$ is the total energy of C₆H₅N₅ and one Na atom in the gas phase condition.

**The relative reference data is E_0 (Solvation)=-666.494934 a.u., where E_0 (Solvation) is the total energy of C₆H₅N₅ and one Na atom under COSMO conditions.

Advantion site	Gas	COSMO	
Ausorption site	- <i>E</i> /(a.u.)	<i>– E/</i> (a.u.)	
$C_6H_5N_5+Na(111)$	13477.722133	13477.731416	
Тор	13477.684909	13477.692712	
FCC	13477.693251	13477.698760	
НСР	13477.687032	13477.689129	
LB	13477.689157	13477.688483	
SB	13477.679287	13477.691028	

Table S4 Total energy [E(a.u)] and adsorption energy $[E_{ads}/(eV)]$ of N₂ at various adsorption sites on Na(111) surface under gas phase conditions.

Adsorption site	Gas		
Ausorption site	- <i>E</i> /(a.u.)	$E_{ads}/(eV)$	
N ₂ +Na(111)	7415.309509	-	
Тор	7415.324420	-0.41	
FCC	7415.325530	-0.44	
НСР	7415.323979	-0.39	
Bridge	7415.324981	-0.42	

	0 1	/ 4		
Species —	COSMO		Explicit Solvation	
	GGA-PW91*	GGA-PBE**	GGA-PW91*	GGA-PBE**
TSB2	5.2	7.4	9.8	10.2
PB2	-55.5	-55.4	-58.7	-57.4

Table S5 Relative energies $[E_{rel}/(kcal/mol)]$ of the released N₂ reaction paths.

Notes:

* In GGA-PW91 level, the relative reference data E_0 are -7801.943028 and -8043.814061 a.u. under the continuum solvent model (COSMO) and explicit solvent model, respectively.

** In GGA-PBE level, the relative reference data E_0 are -7806.770315 and -8039.056739 a.u. under the continuum solvent model (COSMO) and explicit solvent model, respectively.

Table S6 Relative energies $[E_{rel}/(kcal/mol)]$ and frequencies $v(cm^{-1})$ of the reaction paths during C₆H₅N₅ cracking reaction.

Species –	Gas		COSMO	
	E_{rel} (kcal/mol)*	$v(\text{cm}^{-1})$	<i>E_{rel}</i> (kcal/mol)**	<i>v</i> (cm ⁻¹)
TS2	10.2	-387.3	13.2	-381.8
P2	-45.3	-	-44.0	-

Notes:

*The relative reference data is $E_0(Gas)$ =-505.493958 a.u., and $E_0(Gas)$ is the total energy of C₆H₅N₅ in the gas phase.

**The relative reference data is E_0 (Solvation)=-505.502106 a.u., where E_0 (Solvation) is the total energy of C₆H₅N₅ under COSMO.