Stable and metastable crystal structures and ammonia dynamics in strontium chloride ammines

Samet Demir,^{†,‡} Gözde İniş Demir,[†] Mehmet Çankaya,[†] and Adem Tekin^{*,†,‡}

†Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
‡TÜBİTAK Research Institute for Fundamental Sciences, 41470 Gebze, Kocaeli, Türkiye

E-mail: adem.tekin@itu.edu.tr

List of Figures

S1	Different Sr coordinations used in the crystal structure prediction of each phase.	5
S2	Relative energy-density relationships at PBEsol-D3 level of calculations for	
	all considered predicted crystal structures.	6
S3	Relative energy-density relationships at PW91-D3 level of calculations for all	
	considered predicted crystal structures	7
S4	Stable octammine crystal structures found by FFCASP	9
$\mathbf{S5}$	Structural details of two similar octammine structure	10
$\mathbf{S6}$	Phonon band diagrams of octammine structures. Dotted red lines indicate	
	the low bounds within the errorbar of $0.3\mathrm{THz}$	10
S7	Bulk diffusion NH_3 in SrN8Cl2_1(Exp)	11
$\mathbf{S8}$	Stable hexammine crystal structures found by FFCASP.	12

$\mathbf{S9}$	Phonon band diagrams of hexammine structures. Dotted red lines indicate	
	the low bounds within the errorbar of 0.3 THz	14
S10	Stable tetrammine crystal structures found by FFCASP	15
S11	Phonon band diagrams of tetrammine structures. Dotted red lines indicate	
	the low bounds within the errorbar of 0.3 THz	17
S12	Experimental and the predicted stable diammine crystal structures found by	
	FFCASP	18
S13	Structural differences between SrN2Cl2_1(Exp) and SrN2Cl2_2	20
S14	Phonon band diagrams of diammine structures. Dotted red lines indicate the	
	low bounds within the errorbar of 0.3 THz	21
S15	low bounds within the errorbar of $0.3 \text{ THz}. \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ Bulk diffusion of NH ₃ in SrN2Cl2_1(Exp).	21 22
S15 S16	low bounds within the errorbar of 0.3 THz Bulk diffusion of NH3 in SrN2Cl2_1(Exp)Surface diffusion of NH3 in SrN2Cl2_1(Exp)	212223
S15 S16 S17	low bounds within the errorbar of $0.3 \mathrm{THz}$ Bulk diffusion of NH3 in SrN2Cl2_1(Exp)Surface diffusion of NH3 in SrN2Cl2_1(Exp)Bulk diffusion of NH3 in SrN2Cl2_2	21222324
S15 S16 S17 S18	low bounds within the errorbar of $0.3 \mathrm{THz}$ Bulk diffusion of NH3 in SrN2Cl2_1(Exp)Surface diffusion of NH3 in SrN2Cl2_1(Exp)Bulk diffusion of NH3 in SrN2Cl2_2Stable monoammine crystal structures found by FFCASP	 21 22 23 24 25
S15 S16 S17 S18 S19	low bounds within the errorbar of 0.3 THz.Bulk diffusion of NH3 in SrN2Cl2_1(Exp).Surface diffusion of NH3 in SrN2Cl2_1(Exp).Bulk diffusion of NH3 in SrN2Cl2_2.Stable monoammine crystal structures found by FFCASP.Phonon band diagrams of monoammine structures. Dotted red lines indicate	 21 22 23 24 25
S15S16S17S18S19	low bounds within the errorbar of 0.3 THz.Bulk diffusion of NH3 in SrN2Cl2_1(Exp).Surface diffusion of NH3 in SrN2Cl2_1(Exp).Bulk diffusion of NH3 in SrN2Cl2_2.Stable monoammine crystal structures found by FFCASP.Phonon band diagrams of monoammine structures. Dotted red lines indicatethe low bounds within the error bar of 0.3 THz.	 21 22 23 24 25 27
S15 S16 S17 S18 S19 S20	low bounds within the errorbar of 0.3 THz.Bulk diffusion of NH3 in SrN2Cl2_1(Exp).Surface diffusion of NH3 in SrN2Cl2_1(Exp).Bulk diffusion of NH3 in SrN2Cl2_2.Stable monoammine crystal structures found by FFCASP.Phonon band diagrams of monoammine structures. Dotted red lines indicatethe low bounds within the error bar of 0.3 THz.Bulk diffusion of NH3 in SrN1Cl2_1(Exp).	 21 22 23 24 25 27 28

List of Tables

$\mathbf{S1}$	Bond distance thresholds (in Å) used for the crystal structure prediction of	
	each phase.	4
S2	Crystallographic details, energy ranking and density of the stable octamine	
	structures in the energy range up to 0.5 eV/f.u. above the global minimum	
	calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory	8

- S3 Crystallographic details, energy ranking and density of the stable hexamine structures in the energy range up to 0.5 eV/f.u. above the global minimum calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory.
- S4 Crystallographic details, energy ranking and density of the stable tetramine structures in the energy range up to 0.5 eV/f.u. above the global minimum calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory.
 16

13

- S5 Crystallographic details, energy ranking and density of the stable diamine structures in the energy range up to 0.5 eV/f.u. above the global minimum calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory. 19
- S6 Crystallographic details, energy ranking and density of the stable monoamine structures in the energy range up to 0.5 eV/f.u. above the global minimum calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory.

Bond Distance	SrN1Cl2	SrN2Cl2	SrN4Cl2	SrN6Cl2	SrN8Cl2
Threshold					
Cl - Cl	3.30	3.30	5.00	5.20	5.20
Cl – H				2.30	2.30
Cl - N	3.00	3.00	3.20		
H - H	1.50	1.50	1.50		
N - N	2.73	2.73	2.73		
Sr - Cl	2.90	2.90	4.50	4.80	4.80
Sr - H		2.70			
Sr - N	2.48	2.48	2.48		
Sr - Sr	4.20	4.20	7.00	7.00	7.00

Table S1: Bond distance thresholds (in Å) used for the crystal structure prediction of each phase.

Figure S1: Different Sr coordinations used in the crystal structure prediction of each phase.

Figure S2: Relative energy-density relationships at PBEsol-D3 level of calculations for all considered predicted crystal structures.

Figure S3: Relative energy-density relationships at PW91-D3 level of calculations for all considered predicted crystal structures.

Table S2: Crystallographic details, energy ranking and density of the stable octamine structures in the energy range up to 0.5 eV/f.u. above the global minimum calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory.

Structure		PBE-D3	PBESOL-D3	PW91-D3
Name				
	a	7.3965	7.2305	7.5035
	b	14.9465	14.5719	15.1669
SrN8Cl2_1(Exp)	с	11.9658	11.7064	12.2405
$P2_1/c$ (14)	β	90.09	90.09	90.23
	ΔE	0.0	0.0	0.0
	ho	1.4801	1.5874	1.4055
	a	7.4034	7.2366	7.5115
	b	11.9565	11.7049	12.2254
SrN8Cl2_2	с	16.6439	16.2241	16.8976
$P2_1/c (14)$	β	116.25	116.21	116.28
	ΔE	0.0061	0.0043	0.0070
	ho	1.4818	1.5879	1.4072
	a	7.0317	6.8543	7.2685
	b	7.4214	7.2621	7.5648
	с	13.0369	12.7612	13.1321
SrN8Cl2_3	α	89.45	89.40	89.39
P1(1)	β	87.63	87.41	88.26
	γ	89.27	89.14	89.54
	ΔE	0.1272	0.1452	0.0446
	ho	1.4403	1.5430	1.3565
	a	7.5032	7.3437	7.7484
SrN8Cl2 4	b	14.9764	14.8080	14.8303
$D_{nn}2(34)$	с	5.9410	5.7241	6.2300
$\begin{bmatrix} 1 & 11112 & (34) \end{bmatrix}$	ΔE	0.3011	0.2814	0.2392
	ho	1.4664	1.5727	1.3674

Figure S4: Stable octammine crystal structures found by FFCASP.

Figure S5: Structural details of two similar octammine structure.

Figure S6: Phonon band diagrams of octammine structures. Dotted red lines indicate the low bounds within the errorbar of 0.3 THz.

Figure S7: Bulk diffusion $\rm NH_3$ in SrN8Cl2_1(Exp).

 $SrN6Cl2_1$

SrN6Cl2_2

Figure S8: Stable hexammine crystal structures found by FFCASP.

Structure		PBE-D3	PBESOL-D3	PW91-D3
Name				
	a	8.6709	8.5267	8.7098
G_NGCI9_1	\mathbf{c}	12.5336	11.9874	13.3595
D2 (146)	γ	120.00	120.0	120.00
no (140)	ΔE	0.0	0.0	0.0
	ho	1.5927	1.7214	1.4809
	a	10.0404	9.8822	10.3062
	b	8.1930	8.0150	8.3643
SrN6Cl2_2	c	13.8151	13.4562	14.0916
Cc (9)	β	97.57	97.30	99.36
	ΔE	0.1083	0.1310	0.0433
	ho	1.5389	1.6384	1.4458
	a	10.9664	10.7874	11.1949
	b	10.4937	10.3313	10.7203
SrN6Cl2_3	c	11.2010	10.8456	11.4177
Cc (9)	β	119.19	119.03	119.06
	$\Delta \mathrm{E}$	0.1302	0.1502	0.0765
	ρ	1.5371	1.6380	1.4447
	a	5.6002	5.4599	5.6811
	b	7.5100	7.4020	7.6934
SrN6Cl2_4	c	13.2439	13.0202	13.4607
P2/c (13)	β	92.22	92.44	91.38
	$\Delta \mathrm{E}$	0.1940	0.2009	0.1783
	ho	1.5556	1.6469	1.4721

Table S3: Crystallographic details, energy ranking and density of the stable hexamine structures in the energy range up to 0.5 eV/f.u. above the global minimum calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory.

Figure S9: Phonon band diagrams of hexammine structures. Dotted red lines indicate the low bounds within the errorbar of $0.3 \,\mathrm{THz}$.

Figure S10: Stable tetrammine crystal structures found by FFCASP.

Table S4: Crystallographic details, energy ranking and density of the stable tetramine structures in the energy range up to 0.5 eV/f.u. above the global minimum calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory.

Structure		PBE-D3	PBESOL-D3	PW91-D3
Name				
	a	8.2846	8.0922	8.5050
S _n N4Cl ₂ 1	b	10.3188	10.2239	10.4692
$ \begin{array}{c} 51114012_{-1} \\ Eddd (70) \end{array} $	с	20.5038	19.9657	20.6889
F aaa (10)	$\Delta \mathrm{E}$	0.0	0.0	0.0
	ho	1.7177	1.8227	1.6344
	a	10.2606	10.0032	10.3555
S _m N4Cl2 2	b	6.6760	6.5978	6.8017
$C_{max}(64)$	с	12.8366	12.5547	13.1156
Cmce(04)	$\Delta \mathrm{E}$	0.0105	0.0126	0.0066
	ho	1.7120	1.8168	1.6296
	a	6.6385	6.5667	6.7326
SrN4Cl2 2	b	12.9623	12.7381	13.2248
Ibam (72)	с	10.2169	9.9064	10.3529
100m(12)	$\Delta \mathrm{E}$	0.0802	0.0728	0.0827
	ho	1.7123	1.8167	1.6331
	a	6.6279	6.5164	6.7551
SrN4Cl2_4	с	20.2231	19.6910	20.4491
I - 42m (121)	$\Delta \mathrm{E}$	0.1546	0.1688	0.1508
	ho	1.6946	1.8004	1.6133

Figure S11: Phonon band diagrams of tetrammine structures. Dotted red lines indicate the low bounds within the errorbar of $0.3 \,\mathrm{THz}$.

 $SrN2Cl2_1(Exp)$

SrN2Cl2_3

 $SrN2Cl2_4$

 $SrN2Cl2_5$

Figure S12: Experimental and the predicted stable diammine crystal structures found by FFCASP.

Structure		PBE-D3	PBESOL-D3	PW91-D3
Name				
	a	8.1659	8.0647	8.2727
$G_{\rm T}$ NOCIO 1(E)	b	6.1329	5.9964	12.7401
$\operatorname{SrN2Cl2_1(Exp)}_{\mathcal{D}_{\mathcal{O}}(7)}$	с	12.3484	12.0279	20.6889
PC(I)	β	90.09	90.39	91.40
(Z'=4)	$\Delta \mathrm{E}$	0.0	0.0	0.0
	ρ	2.0684	2.1992	1.9609
	a	6.2674	6.1387	6.5874
G_NOCIO O	b	6.1704	6.0495	6.1588
$D_{2} = \frac{5 \Gamma 2 C I Z_{2}}{D_{2} - (14)}$	с	8.0809	7.9261	8.2997
$P_{21}/c (14)$	β	90.95	90.64	95.83
(Z = Z)	$\Delta \mathrm{E}$	0.0246	0.0307	0.0035
	ρ	2.0469	2.1730	1.9093
	a	4.2864	4.2285	4.3213
G.NOCIO 2	b	6.1099	5.9783	6.2063
$D_{2} = \frac{51112012}{D_{2}}$	с	11.9890	11.6666	12.5683
P_{21}/c (14) (7/ - 2)	β	90.28	90.40	93.21
(Z = 2)	$\Delta \mathrm{E}$	0.0782	0.0786	0.0298
	ρ	2.0370	2.1687	1.9004
	a	5.1809	5.0739	5.2174
SrN2Cl2_4	с	16.5299	16.0912	16.9070
$R - 3m \ (166)$	γ	120.00	120.00	120.00
(Z'=3)	ΔE	0.2363	0.0098	0.4317
	ρ	2.4967	2.6741	2.4070
	a	8.3870	8.2161	8.5915
SrN2Cl2_5	b	11.3899	11.1249	11.4762
Fdd2 (43)	с	13.5673	13.4044	13.7301
(Z'=2)	$\Delta \mathrm{E}$	0.2634	0.2259	0.1892
	ρ	1.9739	2.0881	1.8898

Table S5: Crystallographic details, energy ranking and density of the stable diamine structures in the energy range up to 0.5 eV/f.u. above the global minimum calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory.

Figure S13: Structural differences between SrN2Cl2_1(Exp) and SrN2Cl2_2.

Figure S14: Phonon band diagrams of diammine structures. Dotted red lines indicate the low bounds within the errorbar of $0.3 \,\mathrm{THz}$.

Figure S15: Bulk diffusion of $\rm NH_3$ in SrN2Cl2_1(Exp).

Figure S16: Surface diffusion of $\rm NH_3$ in SrN2Cl2_1(Exp).

Figure S17: Bulk diffusion of $\rm NH_3$ in SrN2Cl2_2.

 $SrN1Cl2_1(Exp)$

 $SrN1Cl2_3$

 $SrN1Cl2_4$

 $SrN1Cl2_5$

Figure S18: Stable monoammine crystal structures found by FFCASP.

Table S6: Crystallographic details, energy ranking and density of the stable monoamine structures in the energy range up to 0.5 eV/f.u. above the global minimum calculated within the PBE-D3, PBESOL-D3 and PW91-D3 levels of theory.

Structure		PBE-D3	PBESOL-D3	PW91-D3
Name				
	a	4.5085	4.4399	4.5372
S_{m} N1Cl9 1(Errp)	b	7.5008	7.3576	7.5733
$D_2 /m (11)$	с	7.3001	7.1227	7.4676
$P Z_1/m (11)$ (7' - 2)	β	107.78	108.23	106.17
(Z = 2)	$\Delta \mathrm{E}$	0.0	0.0	0.0
	ρ	2.4802	2.638	2.3658
	a	5.4404	5.3491	5.5129
S _w N1Cl2 2	b	4.5055	4.4378	4.5394
D_{2} / m_{11}	\mathbf{c}	10.3480	10.1257	10.5550
$P Z_1/m (11)$	β	102.84	102.95	104.14
(Z = Z)	$\Delta \mathrm{E}$	0.0489	0.0497	0.0015
	ρ	2.3575	2.4889	2.2762
	a	4.4989	4.4363	4.5316
SrN1Cl2_3	b	10.2256	9.9727	10.3336
$Pmn2_1$ (31)	с	5.4601	5.3764	5.5225
(Z'=2)	$\Delta \mathrm{E}$	0.0768	0.0742	0.0198
	ρ	2.3211	2.4511	2.2545
	a	14.0847	13.7799	14.4199
G _n N1Cl9_4	b	4.5442	4.4921	4.5790
$\begin{array}{c} \text{SINICIZ}_4\\ C_2/m_2(12) \end{array}$	\mathbf{c}	8.0654	7.8744	8.0800
$\binom{C2}{m} \binom{12}{(2^{\prime}-4)}$	β	101.51	101.58	101.73
(Z = 4)	$\Delta \mathrm{E}$	0.0814	0.0814	0.0197
	ρ	2.3052	2.4419	2.3222
	a	4.7587	4.6970	4.7788
SrN1Cl2_5	с	6.2656	6.0595	6.4437
P3m1 (156)	γ	120.00	120.00	120.00
(Z' = 1)	$\Delta \mathrm{E}$	0.1867	0.1697	0.1511
	ρ	2.3052	2.5179	2.2875

Figure S19: Phonon band diagrams of monoammine structures. Dotted red lines indicate the low bounds within the error bar of $0.3 \,\mathrm{THz}$.

.

Figure S20: Bulk diffusion of NH_3 in SrN1Cl2_1(Exp).

Figure S21: Bulk diffusion of $\rm NH_3$ in SrN1Cl2_2.