Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information

A synergetic promotion of surface stability for high-voltage

LiCoO₂ by multi-element surface doping: a first-principles study

Hongbin Lin,^a Xiumei Kang,^a Guigui Xu,^{*ab} Yue Chen,^a Kehua Zhong,^a Jian-Min Zhang^a and Zhigao Huang^{*a}

^aFujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China

^bConcord University College Fujian Normal University, Fuzhou 350117, China

*Author to whom correspondence should be addressed.

E-mail: xuguigui082@126.com (G. Xu); zghuang@fjnu.edu.cn (Z. Huang).

Fig. S1 Schematic illustrations of (a, b) two types of doping configurations for Ti-doped $LiCoO_2$ (104) surface, (c, d) two types of doping configurations for Mg-doped $LiCoO_2$ (104) surface and (e, f) two types of doping configurations for Al-doped $LiCoO_2$ (104) surface.

System	Doping configurations	Formation energy ^E form (eV)	Energy difference ΔE_{form} (eV)
Ti-doped LiCoO ₂ (104)	\mathbf{Ti}_{I}	-2.50	0
	$\mathbf{T}\mathbf{i}_{\Pi}$	-2.02	0.48
Mg-doped LiCoO ₂ (104)	Mg_I	-3.65	0
	$\mathbf{M}\mathbf{g}_{\mathrm{II}}$	-4.43	-0.78
Al-doped LiCoO ₂ (104)	\mathbf{Al}_{I}	-5.75	0
	$\mathbf{Al}_{\mathrm{II}}$	-7.99	-2.24

Table S1 Calculated formation energies ($^{E_{form}}$) and energy differences ($^{\Delta E_{form}}$, relative to the surface layer doping configurations) of various doping configurations for Ti-doped, Mg-doped and Al-doped LiCoO₂ (104) surfaces.

Fig. S2 Schematic illustrations of four types of doping configurations for Ti-Mg co-doped $LiCoO_2$ (104) surface. The distances between nearest doping Ti and Mg at (104) surface are 2.826 Å, 2.826 Å, 5.740 Å and 6.398 Å in these four doping configurations respectively.

Fig. S3 Schematic illustrations of four types of doping configurations for Ti-Al co-doped LiCoO₂ (104) surface.

Fig.S4 Calculated formation energies ($^{E}_{form}$) of various doping configurations for Ti-Al co-doped LiCoO₂ (104) surface.

Fig. S5 Schematic illustrations of four types of doping configurations for Ti-Al-Mg co-doped $LiCoO_2$ (104) surface.

Fig. S6 Calculated formation energies (E form) of various doping configurations for Ti-Al-Mg co-doped LiCoO₂ (104) surface.