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Figure S1. 2D structures of the sixteen challenge molecules. Same as Figure 1. 

Table S1. The given labeling scheme and SMILES strings of the sixteen challenge molecules as part of the 
SAMPL9 LogP challenge. 

Label Molecule SMILES 

1 Albendazole CCCSc1ccc2c(c1)[nH]c(n2)NC(=O)OC 

2 Alprenolol CC(C)NCC(O)COc1ccccc1CC=C 

3 Amitriptyline CN(C)CCC=C2c1ccccc1CCc3ccccc23 

4 Bifonazole c1ccc(cc1)C(c2ccc(cc2)c3ccccc3)n4ccnc4 

5 Chlorpheniramine maleate salt CN(C)CCC(c1ccc(Cl)cc1)c2ccccn2 

6 Epinephrine CNC[C@H](O)c1ccc(O)c(O)c1 

7 Fluphenazine dihydrochloride OCCN4CCN(CCCN2c1ccccc1Sc3ccc(cc23)C(F)(F)F)CC4 

8 Glyburide COc1ccc(Cl)cc1C(=O)NCCc2ccc(cc2)S(=O)(=O)NC(=O)NC3CCCCC3 

9 Imipramine hydrochloride CN(C)CCCN2c1ccccc1CCc3ccccc23 

10 Ketoprofen CC(C(O)=O)c1cccc(c1)C(=O)c2ccccc2 

11 Nalidixic acid CCn1cc(C(O)=O)c(=O)c2ccc(C)nc12 

12 Paracetamol CC(=O)Nc1ccc(O)cc1 

13 Pindolol CC(C)NCC(O)COc1cccc2[nH]ccc12 

14 Quinine COc4ccc3nccc(C(O)C1CC2CCN1CC2C=C)c3c4 

15 Sulfamethazine Cc2cc(C)nc(NS(=O)(=O)c1ccc(N)cc1)n2 

16 Trazodone hydrochloride Clc1cccc(c1)N4CCN(CCCn3nc2ccccn2c3=O)CC4 
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Online Resources 
Software Description Website 

ORCA 
Using a vertical solvation 

approach with DFT to 
compute logPo/w. 

https://www.orcasoftware.de/tutorials_orca/prop/CPCM.html 

GROMACS 
Tutorial for computing the 
free energy of solvation of 

ethanol in water. 

https://tutorials.gromacs.org/free-energy-of-solvation.html 
https://tutorials.gromacs.org/awh-free-energy-of-solvation.html 

 

Quantum Mechanical (QM) Approaches 
Density Functional Theory (DFT) Calibration 

Fifteen functionals from five developer families were included in the calibration of density functionals 
to examine the effects of density functional tier and parameterization on predicting logPtol/w. These are 
shown in Table S1. The correlation consistent basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ)1 were used to 
compare the effect of basis sets on logPtol/w. The recommended cc-pV(n+d)Z basis sets were used for all S 
and Cl atoms.2 Various extrapolation schemes have been developed to extrapolate electronic energies to 
the complete basis set (CBS) limit using Dunning’s correlation consistent basis sets, including three-point 
extrapolation schemes based on the ζ-level of the basis set (Peterson)3 and two-point extrapolation 
incorporating the maximum angular momentum of the basis set (Schwartz).4–7 For this work, a mixed 
Peterson-Schwartz extrapolation scheme (PS3) that averages the Peterson (P) three-point with the 
Schwartz-3 (S3) two-point extrapolation with triple- and quadruple-zeta level basis sets or PS3(TQ) is used 
for all extrapolations to the CBS limit.8,9 This mixed extrapolation scheme has been shown to correct the 
over- and underestimation of the CBS limit of the S3 and P schemes, respectively, due to their respective 
rates of convergence. 

 
Table S2. Density functionals used in this study.  

Functional Family Functional Tiera % Exact Exchange 

BXLYP 

BLYP10,11 GGA 0% 

B3LYP12 H-GGA 20% 

BHandHLYP13 H-GGA 50% 

PBE 

PBE14,15 GGA 0% 

PBE0 14–16 H-GGA 25% 

revPBE014,15 H-GGA 25% 

TPSS 

TPSS17 M-GGA 0% 

TPSSh17,18 HM-GGA 10% 

TPSS019 HM-GGA 25% 

Minnesota 

M06L20 M-GGA 0% 

M06 21 HM-GGA 27% 

M06-2X21 HM-GGA 54% 

ω 

ωB97 22–25 Range-separated hybrid 0% 

ωB97X 22–25 Range-separated hybrid 15.7% 

ωB97X-V 22–25 Range-separated hybrid 16.7% 
a GGA = generalized gradient approximation, H-GGA (hybrid-GGA), M-GGA (meta-GGA), HM-GGA (hybrid 
meta GGA). 

 
 

https://www.orcasoftware.de/tutorials_orca/prop/CPCM.html
https://tutorials.gromacs.org/free-energy-of-solvation.html
https://tutorials.gromacs.org/awh-free-energy-of-solvation.html
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Table S3. The mean unsigned error (MUE) and standard deviation (σ) of each basis set and functional 
combination between the calculated and experimental logPtol/w. 

Functionals cc-pVDZ cc-pVTZ cc-pVQZ cc-pV∞Z 

BLYP 1.41±0.86 1.15±1.03 1.13±1.01 1.13±0.99 

B3LYP 1.09±0.92 1.20±0.96 1.23±0.93 1.24±0.92 

BHandHLYP 1.14±0.97 1.47±1.02 1.49±1.02 1.50±1.02 

M06L 1.49±1.09 1.21±1.07 1.20±1.07 1.19±1.08 

M06 1.32±1.07 1.18±0.97 1.18±0.96 1.17±0.95 

M06-2X 1.12±0.98 1.27±0.93 1.25±0.91 1.24±0.89 

PBE 1.33±0.82 1.00±0.97 1.00±0.95 1.00±0.93 

PBE0 0.96±0.90 1.13±0.88 1.14±0.87 1.15±0.86 

REVPBE0 0.99±0.78 1.12±0.90 1.13±0.88 1.14±0.87 

TPSS 1.31±0.83 1.08±1.00 1.06±0.98 1.06±0.96 

TPSSh 1.15±0.86 1.10±0.96 1.10±0.94 1.09±0.93 

TPSS0 0.97±0.93 1.19±0.92 1.20±0.90 1.20±0.89 

ωB97 1.13±0.94 1.17±0.88 1.19±0.88 1.21±0.87 

ωB97X 1.09±0.93 1.20±0.89 1.21±0.89 1.23±0.88 

ωB97X-V 1.13±0.92 1.16±0.88 1.18±0.87 1.18±0.86 

 
Table S4. The mean unsigned error (MUE) and standard deviation (σ) when varying a functional and 
keeping a basis set constant for the deviations between the calculated and experimental logPtol/w values. 

Basis Set MUE±σ 

cc-pVDZ 1.18±0.91 

cc-pVQZ 1.18±0.92 

cc-pVTZ 1.18±0.93 

cc-pV∞Z 1.18±0.91 

 
One of the main goals of the DFT calibration was to find an optimal method/basis set combination 

that would generally apply to computing logPtol/w, based on the mean unsigned error (MUE), and standard 
deviation (σ). Based on Figure S2, cc-pV∞Z had the lowest change in logP due to removing basis set 
incompleteness error. However, in Figure S2, and in Table S4, the MUE when comparing all basis sets was 
the same. Therefore, regardless of functional choice, changing the basis set would have minimal effect on 
the logP value. cc-pVTZ was chosen for the submission trial because it required less processing power and 
time than cc-pVQZ and cc-pV∞Z. Triple-ζ quality basis sets provide a compromise between computational 
cost and accuracy, and so, even though using cc-pVDZ would save CPU time when considering numerous 
DFT calculations, cc-pVDZ yielded the highest MUE for the chosen functional (PBE). Table S3 showed that 
the functional PBE had the lowest MUE and was chosen to be the function for the submission trial. In 
Table S3, the hybrid functionals yielded a higher MUE and σ than the GGA functionals. 
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Figure S2. A box and whiskers plot that compares the signed errors (ΔlogP) of the calculated logPtol/w from the experimental logPtol/w values for the 
sixteen challenge molecules for each basis set. The box highlights the distribution of logP when selecting different density functionals. The orange 
line represents the average value in each box, and the black circles represent outliers. The basis sets examined are cc-pVDZ (green), cc-pVTZ (red), 
cc-pVQZ (blue), and cc-pV∞Z (black).
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DLPNO-Solv-ccCA 
The correlation consistent Composite Approach (ccCA) was developed by Wilson and coworkers as an 

alternative to the Gaussian-n (Gn) composite methods. Several variants have emerged over the years to 
describe various chemical phenomena across the periodic table including transition metal chemistry, 
solvated species, and lanthanides.26 The DLPNO-Solv-ccCA27 method (Table S5) is a combination of the 
DLPNO-ccCA28 and Solv-ccCA29 methods targeting main group thermochemistry, and was developed as 
part of the SAMPL6 competition to predict the logPo/w.27 Composite approaches use stepwise additive 
corrections to approximate a higher level of theory as shown in Equation S1. 

 
𝐸𝐷𝐿𝑃𝑁𝑂−𝑆𝑜𝑙𝑣−𝑐𝑐𝐶𝐴  = 𝐸𝑟𝑒𝑓 + 𝛥𝐶𝐶 + 𝛥𝐶𝑉 + 𝛥𝑆𝑅 + 𝑍𝑃𝐸 #(𝑆1)  

 
Table S5. A Schematic for DLPNO-Solv-ccCA.27 

Geometry Optimization B3LYP-D3/cc-pVTZ (gas) 

RIJCOSX-HF/CBS RIJCOSX-HF/aug-cc-pVDZ SMD(solvent) 
RIJCOSX-HF/aug-cc-pVTZ SMD(solvent) 
RIJCOSX-HF/aug-cc-pVQZ SMD(solvent) 

𝐸(𝑛) =  𝐸𝐶𝐵𝑆  +  𝐵𝑒−1.63𝑛 
DLPNO-MP2/CBS DLPNO-MP2/aug-cc-pVDZ SMD (solvent) 

DLPNO-MP2/aug-cc-pVTZ SMD (solvent) 
DLPNO-MP2/aug-cc-pVQZ SMD (solvent) 

𝐸𝑃(𝑥) =  𝐸𝐶𝐵𝑆 +  𝐵𝑒−(𝑥−1) + 𝐶𝑒−(𝑥−1)2
 

𝐸𝑆3(𝑙𝑚𝑎𝑥) =  𝐸𝐶𝐵𝑆 +
𝐵

(𝑙𝑚𝑎𝑥 +
1
2)

4 

ΔCC DLPNO-CCSD(T)/cc-pVTZ SMD (solvent) –  
DLPNO-MP2/cc-pVTZ SMD (solvent) 

ΔCV DLPNO-MP2/aug-cc-pCVTZ SMD (solvent) –  
DLPNO-MP2/aug-cc-pVTZ SMD (solvent) 

ΔSR DLPNO-MP2/cc-pVTZ-DK SMD (solvent) –  
DLPNO-MP2/cc-pVTZ SMD (solvent) 

ZPE B3LYP-D3/cc-pVTZ frequencies scaled by 0.9890 

Solvent is either water or toluene. The reference energy is obtained from the Hartree-Fock (HF) energy 
extrapolated to the complete basis set (CBS) limit and an extrapolation of the DLPNO-MP2 correlation 
energy using the PS3(TQ) extrapolation scheme. The correlation correction (ΔCC), accounting for higher 
level electron correlation, core-core/core-valence (ΔCV) correlation energies, and scalar relativistic (ΔSR) 
corrections are added to the reference energy to yield the total energy. The correlation consistent 
auxiliary basis sets were used for the DLPNO methods and the def2 auxiliary basis set was used for the 
Hartree-Fock coulomb and exchange integral computations. 
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Molecular Mechanics 
Table S6. The decoupled 25-point λ path used to compute the solvation free energy in each solvent. 0.00 
means that the molecule is fully decoupled and does not interact with its surroundings, and 1.00 means 
that the interactions are turned on as noted in Ref 30. 

vdW Interactions Coulomb Interactions 

0.00 0.00 

0.10 0.00 

0.20 0.00 

0.22 0.00 

0.24 0.00 

0.26 0.00 

0.28 0.00 

0.30 0.00 

0.33 0.00 

0.36 0.00 

0.40 0.00 

0.45 0.00 

0.50 0.00 

0.60 0.00 

0.70 0.00 

0.80 0.00 

0.90 0.00 

1.00 0.00 

1.00 0.17 

1.00 0.34 

1.00 0.48 

1.00 0.62 

1.00 0.75 

1.00 0.88 

1.00 1.00 

 

Data Science and Unsupervised Machine Learning 
Unsupervised machine learning was used to cluster conformer structures using pairwise nucleus-

nucleus distance matrices as a high dimensional input that was reduced via principal component analysis. 
The variation caused by creating pairwise matrices should provide more information into potential 
clustering of data by structural conformations within a given solvent. 5000 structures extracted from the 
MD simulations of each molecule in toluene and water were split into randomized training sets containing 
2000, 3000, 4000, and 5000 structures to perform a five-fold cross-validation of the number and 
composition of the clusters predicted by the unsupervised machine learning algorithms (K-means, 
Gaussian Mixture Models). Different training set sizes were utilized to balance the density of each cluster 
while retaining the information of structural conformations as including more data points into the clusters 
may provide information into cluster density that may be attributed to transient species but may be 
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considered intermediates. Figure S3 demonstrates this concept for 5, in which sampling 2K points and 4K 
points effectively identifies similar clusters across the first two principal components. The 4K sampling 
adds more datapoints to the lower right region near (0.6, -0.2), which would translate the cluster mean 
relative to its location in the 2K sampling size, and therefore, which structures were sampled as part of 
the ML method presented in Table 3. 

 

Figure S3. The first two principal components of the distance matrix descriptor used for the ML method 
when using a randomized 2K sample size (left) and 4K sample size (right) for 5. 

 
The averaged silhouette scores after the five-fold cross validation for each training set size are 

reported in Table S7. The silhouette score that was closest to the average silhouette score across all 
training sets was the criteria for selecting the number of structures to use in the final clustering, shown in 
Table 3. Since the sample size of 4K structures had the most silhouette scores closest to the average across 
all molecules, the clustering results from the Gaussian Mixture Models when using 4K structures were 
utilized in the final combined results.  

Based on the logP values from the 2K analysis, the cluster assignment might be wrong. So, more 
sample sizes were created. Table S7 shows that a 4K sample size has the closest silhouette scores to the 
average score for each molecule. Silhouette scores are important because they find the optimum cluster 
assignment for each molecule. Table S8 shows how the 4K logPtol/w values differ from the experimental 
logPtol/w values. In Table S8, using the 4K sample size was marginally better than the 2K sample size (0.01 
logPtol/w units). An explanation for this is the incorrect cluster assignment. Since cluster assignment 
changes as a sample size changes, then the cluster assignment impacts the logPtol/w value more than the 
sample size itself.  Because of the complex nature of chemical systems, they are difficult to model and 
there are often no systematic ways to determine the accuracies of blind predictions. Despite the change 
in sample size, the difference between logPtol/w values were insignificant. This would suggest that there is 
some bias in the assumptions of sampling based on sample size and the structures used to represent the 
clusters. Given the statistical nature of chemistry, many of the structures generated through these 
dynamical simulations may not be true equilibrium structures or observable through standard 
experimental characterization techniques like NMR or GC/MS. Therefore, human intuition is still needed 
as part of the research process when building the machine learning methods that attempt to serve as 
“black-box” methods. 
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Table S7. The averaged silhouette scores for each molecule in four different sample sizes following the 
five-fold cross validation. The average of the averaged silhouette scores and the number of clusters 
predicted using a 4K sample size is shown. 

Label 5K 4K 3K 2K 
Average 

Silhouette Score 
Clusters 

1 0.346 0.349 0.351 0.350 0.349 2 

2 0.466 0.462 0.463 0.462 0.463 4 

3 0.578 0.575 0.570 0.569 0.573 2 

4 0.445 0.451 0.455 0.457 0.452 5 

5 0.594 0.592 0.589 0.589 0.591 5 

6 0.502 0.503 0.500 0.506 0.503 4 

7 0.426 0.427 0.428 0.427 0.427 4 

8 0.476 0.477 0.475 0.477 0.476 3 

9 0.641 0.642 0.640 0.641 0.641 8 

10 0.611 0.611 0.622 0.604 0.612 8 

11 0.636 0.630 0.622 0.613 0.625 2 

12 0.441 0.442 0.443 0.450 0.444 6 

13 0.495 0.493 0.491 0.491 0.493 5 

14 0.290 0.293 0.298 0.323 0.301 4 

15 0.579 0.575 0.573 0.530 0.564 2 

16 0.556 0.555 0.553 0.552 0.554 8 
 

Table S8. The calculated logPtol/w values and the mean unsigned error (MUE) for the ML method using a 
2K and 4K sample size. The best results of the two sample sizes are combined to mitigate the effect of 
sampling bias and are also shown in Table 3 as the ML method. 

Label 2K sample size 4K sample size Exp 

1 -1.73 1.79 3.76 

2 -0.54 1.59 2.40 

3 0.83 -1.71 5.51 

4 -1.33 -1.74 5.47 

5 -0.73 4.33 3.61 

6 0.94 -2.72 -1.23 

7 2.34 0.31 4.37 

8 -1.83 4.95 2.79 

9 6.49 -2.33 5.05 

10 0.48 -0.55 2.47 

11 -0.41 2.65 1.46 

12 -3.53 -1.18 -1.59 

13 0.09 -1.40 0.36 

14 -0.84 0.68 1.41 

15 -3.14 -5.09 -0.74 

16 3.50 2.91 3.77 

MUE 2.84 2.83  
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Spartan20 (S20) Method 
 
The conformations generated via the Spartan ‘20 program uses the Merck Molecular Force Field 

(MMFF) to performs its conformation search. The Boltzmann-weighted PBE/cc-pVTZ energies of the 
conformations are scaled relative to the minimum where conformations with energies closer to the 
minimum energy are weighted more than conformations with higher energies. As shown in Figure S4, the 
shape of the violin plots indicates the notable changes in the distributions of the weights in the Boltzmann 
scheme versus the RMSD scheme. This observation is most likely due to the stronger effect of the solvent 
on the electronic energies than the RMSD of the structures with respect to the optimized molecule in each 
solvent. The overall larger change in the Boltzmann weights indicates that the larger range of the 
conformers generated were the cause of the larger errors associated with predicted logP values rather 
than the method of Boltzmann weighting. For the RMSD violin plots, there were no major changes to the 
distributions with respect to each solvent, indicating the optimized structures in each solvent were similar 
in the 3D geometry. 

 
Figure S4. Violin plots showing the weighting distributions from the Boltzmann-weighted scheme (left) 
and the RMSD-weighted scheme (right) for 1 (top) and 5 (bottom). 
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Figure S5. The logPtol/w distribution of the clusters predicted via the Gaussian Mixture Models for 5 using 
the S20 method to generate the conformers and calculate the logPtol/w. Each square in the heat map 
represents a different combination of the conformers assigned to particular clusters to compute logPtol/w. 

 
As seen in Figure S5, the range of calculated logPtol/w values varies between the different clusters, 

showing no clear indication that the cluster assignments correlate to the structural differences that cause 
significant changes in the calculated logPtol/w. 
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Table S9. The weighting of the peaks used in the Mixed submission based on the histogram of calculated 
logPtol/w values. 

Label # peaks % peak 1 % peak 2 % peak 3 % peak 4 % peak 5 Total 

1 2 0.0381 0.9619 0 0 0 1 

2 1 1 0 0 0 0 1 

3 1 1 0 0 0 0 1 

4 1 1 0 0 0 0 1 

5 1 1 0 0 0 0 1 

6 1 1 0 0 0 0 1 

7 1 1 0 0 0 0 1 

8 1 1 0 0 0 0 1 

9 1 1 0 0 0 0 1 

10 1 1 0 0 0 0 1 

11 4 0.1315 0.6336 0.2299 0.0050 0 1 

12 1 1 0 0 0 0 1 

13 1 1 0 0 0 0 1 

14 3 0.1279 0.7197 0.1524 0 0 1 

15 5 0.0180 0.1551 0.5871 0.2260 0.0138 1 

16 1 1 0 0 0 0 1 

 

XYZ files 
All XYZ coordinate files of the optimized molecules at the RIJCOSX-B3LYP-D3BJ/cc-pVT(+d)Z level of 

theory in both implicit solvents are provided in a separate zipped folder. All the molecules were assumed 
to be neutral charge with all electrons paired.  
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