Photo-Oxidation of Methanol in Complexes with Pyrido[2,3-b]pyrazine: a Nonadiabatic Molecular Dynamics Study

Electronic Supplementary Information

Joanna Jankowska*a and Andrzej L. Sobolewski ${ }^{\text {b }}$

Table of contents:

1. Natural Transition Orbitals (NTOs) calculated at the S_{0}-optimized PPMet stable structures (Figs. S1-S3) .page 2
2. Natural Transition Orbitals (NTOs) calculated along direct EDPT paths for studied PPMet
complexes (Fig. S4)
.page 5
3. Charge-transfer (CT) coefficients calculated along direct EDPT paths for studied PPMet
complexes (Tab. S1)
.page 6
4. Single-point energy scan at the QD-NEVPT2 level performed along the direct EDPT reaction path for the PPMet-4 complex (Figs. S5-S6) page 7
5. Relaxed EDPT reaction profiles optimize at the SCS-ADC(2) level of theory (Fig. S7)...page 8
6. Optimization of MECI points for all complexes (Figs. S8-S9, Tab. S2) page 9
7. Monoexponential fits to the S_{0} state population evolution (Fig. S10) page 11
8. Initial velocity correlation analysis (Figs. S11-S13) page 12
9. Visualization of short-ON hopping structures (Fig. S14) page 14
10. Correlation plot of NH distances at hopping points (Fig. S15) page 15
11. Cartesian coordinates of the So-PPMet stable structures page 16

1. Natural Transition Orbitals (NTOs) calculated at the S_{0}-optimized PPMet stable structures

Figure S1: NTOs for PPMet-1 (ADC(2)/cc-pVDZ level of theory @ MP2/cc-pVDZ geometry).

Figure S2: NTOs for PPMet-6 (ADC(2)/cc-pVDZ level of theory @ MP2/cc-pVDZ geometry).

Figure S3: NTOs for PPMet-4 (ADC(2)/cc-pVDZ level of theory @ MP2/cc-pVDZ geometry).

2. Natural Transition Orbitals (NTOs) calculated along direct EDPT paths for studied PPMet complexes

Figure S4: NTOs for $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$ transitions in PPMet-1, PPMet-6, and PPMet-4, calculated at selected points along the respective direct EDPT paths (ADC(2)/cc-pVDZ level of theory).

3. Charge-transfer (CT) coefficients calculated along direct EDPT paths for studied PPMet complexes

Table S1: CT coefficients for PPMet-1, PPMet-6, and PPMet-4, calculated with the TheoDORE 3.0 code at selected points along the respective direct EDPT paths (ADC(2)/ccpVDZ level of theory). For explicit definition, please refer to Ref. 27.

$\mathbf{C T}$	$\mathbf{O H}=1.00 \AA$	$\mathbf{O H}=1.15 \AA$	$\mathbf{O H}=1.30 \AA$
PPMet-1	0.034	0.855	0.966
PPMet-6	0.067	0.982	0.990
PPMet-4	0.047	0.977	0.987

4. Single-point energy scan at the QD-NEVPT2 level performed along the direct EDPT reaction path for the PPMet-4 complex

Figure S5: Single-point QD-NEVPT2/cc-pVDZ energy scan performed along the EDPT reaction path for the PPMet-4 system. Black circles mark results obtained with the active space consisting of 8 electrons distributed in 6 orbitals (AS(8,6)), while red squares make data obtained with a larger active space, $\mathrm{AS}(16,12)$. Empty/full symbols indicate the $\mathrm{S}_{0} / \mathrm{S}_{1}$ energies, respectively.

Figure S6: Active-space orbitals employed in the $\operatorname{AS}(16,12)$ and $\operatorname{AS}(8,6)$ (marked in yellow) single-point QD-NEVPT2/cc-pVDZ energy scan calculation performed along the EDPT reaction path for the PPMet-4 system, plotted for $\mathrm{OH}=1.40 \AA$.

HOMO-7

HOMO-6

HOMO-5

HOMO-4

HOMO-3

HOMO-2

HOMO-1

HOMO

LUMO

LUMO +1

LUMO+2

LUMO +3

5. Relaxed EDPT reaction profiles optimize at the SCS-ADC(2) level of theory

Figure S7: EDPT reaction profiles optimized in the S_{1} state at the SCS-ADC(2)/cc-pVDZ level. Black circles / red squares / blue diamonds mark results obtained for the PPMet-1 / PPMet-6 / PPMet-4 system, respectively, while the empty/full symbols indicate the S_{0} / S_{1} energies.

6. Optimization of MECI points for all complexes

Figure S8: Optimized MECI structures determined with the penalty-functional approach combined with the $\mathrm{ADC}(2) / c c-p V D Z$ method. The reported MECI energies are relative to corresponding S_{0}-state minima.

Figure S9: Molecular orbital active spaces employed in MECI optimizations performed at the XMS-CASPT2/cc-pVDZ level of theory.

PMet-1-MECI

LUMO+1

Table S2: Comparison of properties of $\mathrm{S}_{1} / \mathrm{S}_{0} \mathrm{MECI}$ points optimized at various levels of theory. E MECI - energy of the optimized MECl with respect to the energy of the corresponding isomer SO-minimum structure; E1-EO - energy gap at the optimized conical intersection; $\mathrm{OH}-\mathrm{O}-\mathrm{H}$ distance at MECI; NH - N-H distance at MECI, CONX - dihedral angle between the methoxy radical axis and the PP ring plane, $\mathrm{Ex}(\mathrm{S} 1)-\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$ excitation energy.

ADC(2)/cc-pVDZ						
	E MECI (eV)	E1-EO (eV)	$\mathrm{OH}(\mathrm{A})$	NH (A)	CONX (deg)	Ex(S1) (eV)
PPMet-1	2.227	0.012	1.529	1.089	86	3.53
PPMet-4	2.008	0.008	1.393	1.147	53	3.56
PPMet-6	2.039	0.008	1.433	1.129	52	3.57
XMS-CASPT2(8in6)/cc-pVDZ						
	E MECI (eV)	E1-EO (eV)	$\mathrm{OH}(\mathrm{A})$	NH (A)	CONX (deg)	Ex(S1) (eV)
PPMet-1	2.863	0.000	2.000	1.020	81	4.31
PPMet-4	2.781	0.006	1.865	1.027	41	4.31
PPMet-6	2.641	0.001	1.964	1.023	25	4.36

7. Monoexponential fits to the S_{0} state population evolution

Figure S10: The S_{0}-state populations extracted from the PPMet-1 (black), PPMet-6 (red), and PPMet-4 (blue) NAMD simulations (cross signs), with fitted monoexponential functions $f(t)=A \cdot\left(1-\exp \left(-\frac{t-u}{\tau}\right)\right)$ marked with solid lies, where: $A-$ final S_{0} population as $t \rightarrow \infty$, τ - combined excited state lifetime, u - fixed initial time lag before the S_{0} population begins to rise. The inset shows values fitted for all isomers.

8. Initial velocity correlation analysis

Figure S11: Correlation in the PPMet-1 system between initial relative velocities of atoms involved in formation of the intermolecular hydrogen bond and: (left) the final OH distance, and (right) the duration of the simulation. Black empty circles mark data regarding the O-N relative velocity while crosses (red or blue) denote data for the $\mathrm{N}-\mathrm{H}$ relative velocity.

Figure S12: Correlation in the PPMet-6 system between initial relative velocities of atoms involved in formation of the intermolecular hydrogen bond and: (left) the final OH distance, and (right) the duration of the simulation. Black empty circles mark data regarding the O-N relative velocity while crosses (red or blue) denote data for the N-H relative velocity.

Figure S13: Correlation in the PPMet-4 system between initial relative velocities of atoms involved in formation of the intermolecular hydrogen bond and: (left) the final OH distance, and (right) the duration of the simulation. Black empty circles mark data regarding the O-N relative velocity while crosses (red or blue) denote data for the $\mathrm{N}-\mathrm{H}$ relative velocity.

9. Visualization of short-ON hopping structures

Figure S14: Molecular geometry visualization of two PPMet structures showing short ON distance at the moment of the $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}$ hopping, with indicated relevant interatomic distances. Left/Right: structure observed in the PPMet-6 and PPMet-4 dynamics, respectively.

10. Correlation plot of NH distances at hopping points

Figure S15: Correlation plot of NH4 / NH6 distances at hopping points for the PPMet-6 (red diamonds) and PPMet-4 (blue crosses) dynamics.

11. Cartesian coordinates of the S_{0}-PPMet stable structures

* PPMet-1 (SO-opt: MP2/cc-pVDZ)

21

N 0.9056370 -2.6023093 -1.0910301
C $-0.1209856-2.0054544-0.4094863$
C $0.0098304-0.68211730 .1355708$
N 1.1701253 0.0415499 0.0060046
C $2.1523554-0.5663810-0.6576397$
C $2.0155129-1.8751415-1.2009460$
C -1.0930501 $-0.1100181 \quad 0.8301788$
C $-2.2402225-0.87818250 .9476629$
C -2.2682411 -2.1832036 0.3741300
N -1.2606671 $-2.7506420-0.2863045$
$\begin{array}{llll}\text { O } & 0.5433751 & 2.6368814 & 1.1210181\end{array}$
C $0.2133048 \quad 3.3190800-0.0747433$
H $3.0919652-0.0128723-0.7740609$
H 2.8554675 -2.3290791 -1.7417024
$\begin{array}{llll}\mathrm{H} & -0.9910664 & 0.8984420 & 1.2454899\end{array}$
H $-3.1773429-2.7910670 \quad 0.4685648$
H -3.1220687 -0.4978201 1.4726001
H $0.9801318 \quad 1.8131434 \quad 0.8308591$
H -0.33694374 .23230880 .1998709
H $1.1076251 \quad 3.6244520-0.6521576$
$\begin{array}{llll}\text { H } & -0.4347425 & 2.7184307 & -0.7438793\end{array}$

PPMet-6 (SO-opt: MP2/cc-pVDZ)
21
$\begin{array}{llll}\text { N } & 1.1453498 & 0.0632501 & -0.7729146\end{array}$
C $0.05045050 .5322366-0.0993751$
C $0.01598891 .8546056 \quad 0.4550089$
$\begin{array}{lllll}\mathrm{N} & 1.0695580 & 2.7255756 & 0.3397326\end{array}$
C $2.1172012 \quad 2.2407173-0.3236490$
C $2.15541050 .9240965-0.8720097$
C $-1.1556159 \quad 2.2680341 \quad 1.1467133$
C -2.20692531 .37083661 .2506800
C -2.0764233 0.08008780 .6627736
N -0.9960490 -0.34056120 .0079827
O -0.7340837 -2.9861570 -1.2453402
C 0.4159291 -3.4848792 -0.5972530
$\begin{array}{lllll}\text { H } & 2.9819240 & 2.9058937 & -0.4394281\end{array}$
H 3.0497316 0.5799627 -1.4062404
H -1.18619573 .27648821 .5710363
H -2.9010161 -0.6397568 0.7343426
H -3.1312306 1.63699171 .7724390
H -0.8308658 -2.0741842 -0.9181629
H 0.6086958 -4.4998437 -0.9821402
H 1.3156960 -2.8680589 -0.7875709
H 0.2924701 -3.5653355 0.5033752

PPMet-4 (SO-opt: MP2/cc-pVDZ)
21
$\begin{array}{llll}\mathrm{N} & 1.039715 & -0.123466 & -0.667733\end{array}$
$\begin{array}{llll}\text { C } & -0.037713 & 0.501087 & -0.099614\end{array}$
$\begin{array}{llll}\text { C } & 0.000549 & 1.901550 & 0.210725\end{array}$
N $1.099673 \quad 2.682186-0.040755$
C $2.125887 \quad 2.037597-0.593040$
$\begin{array}{llll}\text { C } & 2.098654 & 0.646938 & -0.904876\end{array}$
$\begin{array}{llll}\text { C } & -1.151633 & 2.490710 & 0.800512\end{array}$
$\begin{array}{llll}\text { C } & -2.247288 & 1.677814 & 1.042551\end{array}$
$\begin{array}{llll}\text { C } & -2.177498 & 0.296431 & 0.695413\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.120786 & -0.295542 & 0.142237\end{array}$
$\begin{array}{llll}\text { O } & 0.673699 & -3.010350 & -1.296863\end{array}$
C 0.176838 -3.572749 -0.101304
$\begin{array}{llll}\text { H } & 3.024565 & 2.628179 & -0.809712\end{array}$
H $2.972009 \quad 0.164313-1.359969$
H $-1.132010 \quad 3.5583221 .040752$
$\begin{array}{llll}\text { H } & -3.042300 & -0.351437 & 0.885715\end{array}$
$\begin{array}{llll}\text { H } & -3.161034 & 2.076230 & 1.494353\end{array}$
H 0.741738 -2.055264 -1.125609
H $0.041135-4.653868$-0.268969
$\begin{array}{lllll}\text { H } & 0.873431 & -3.454653 & 0.755241\end{array}$
$\begin{array}{lllll}\text { H } & -0.797631 & -3.144029 & 0.200944\end{array}$

