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Supplemental Section  
      

Replacement of the Chemical Potential Terms with the Mole Fraction Term 
 

The chemical potential expression for a binary system, 𝜇𝜇1𝑑𝑑𝑛𝑛1 + 𝜇𝜇2𝑑𝑑𝑛𝑛2, can be recast 
with implicit differential terms as: 
 

𝜇𝜇1𝑑𝑑𝑛𝑛1 + 𝜇𝜇2𝑑𝑑𝑛𝑛2 = � 𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋1

�
𝑃𝑃,𝑇𝑇

�𝜕𝜕𝑋𝑋1
𝜕𝜕𝑛𝑛1

�
𝑃𝑃,𝑇𝑇,𝑛𝑛2

𝑑𝑑𝑛𝑛1 + � 𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋2

�
𝑃𝑃,𝑇𝑇

�𝜕𝜕𝑋𝑋2
𝜕𝜕𝑛𝑛2

�
𝑃𝑃,𝑇𝑇,𝑛𝑛1

𝑑𝑑𝑛𝑛2    (S1) 

 

in which 𝜇𝜇𝑖𝑖 = �𝜕𝜕∆𝐺𝐺
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑃𝑃,𝑇𝑇,𝑛𝑛𝑗𝑗≠𝑖𝑖

. Since X1 and X2 vary with each other in a complementary fashion, 

they are not included as constant variables for � 𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋1

�
𝑃𝑃,𝑇𝑇

 and � 𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋2

�
𝑃𝑃,𝑇𝑇

. Using the general 

definition, 𝑋𝑋𝑖𝑖 = 𝑛𝑛𝑖𝑖
∑𝑛𝑛𝑗𝑗

, it can be shown that for a binary system: 

 

�𝜕𝜕𝑋𝑋1
𝜕𝜕𝑛𝑛1

�
𝑃𝑃,𝑇𝑇,𝑛𝑛2

= 𝑋𝑋2
𝑛𝑛1+𝑛𝑛2

           (S2) 

 

�𝜕𝜕𝑋𝑋2
𝜕𝜕𝑛𝑛2

�
𝑃𝑃,𝑇𝑇,𝑛𝑛1

= 𝑋𝑋1
𝑛𝑛1+𝑛𝑛2

           (S3) 

 

Combining Equations (S1) - (S3) yields: 
 

𝜇𝜇1𝑑𝑑𝑛𝑛1 + 𝜇𝜇2𝑑𝑑𝑛𝑛2 = � 𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋1

�
𝑃𝑃,𝑇𝑇

𝑋𝑋2𝑑𝑑𝑛𝑛1
𝑛𝑛1+𝑛𝑛2

+ � 𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋2

�
𝑃𝑃,𝑇𝑇

𝑋𝑋1𝑑𝑑𝑛𝑛2
𝑛𝑛1+𝑛𝑛2

       (S4) 

 

Noting that dX1 = −dX2 for a binary system, Equation (S4) reduces to: 
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𝜇𝜇1𝑑𝑑𝑛𝑛1 + 𝜇𝜇2𝑑𝑑𝑛𝑛2 = � 𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋1

�
𝑃𝑃,𝑇𝑇

𝑋𝑋2𝑑𝑑𝑛𝑛1−𝑋𝑋1𝑑𝑑𝑛𝑛2
𝑛𝑛1+𝑛𝑛2

        (S5) 

 

It can be shown that 𝑑𝑑𝑋𝑋1 = 𝑋𝑋2𝑑𝑑𝑛𝑛1−𝑋𝑋1𝑑𝑑𝑛𝑛2
𝑛𝑛1+𝑛𝑛2

, so Equation (S5) finally becomes: 
 

𝜇𝜇1𝑑𝑑𝑛𝑛1 + 𝜇𝜇2𝑑𝑑𝑛𝑛2 = �𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋𝑖𝑖
�
𝑃𝑃,𝑇𝑇

𝑑𝑑𝑋𝑋𝑖𝑖        (S6) 

 

Since � 𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋1

�
𝑃𝑃,𝑇𝑇

𝑑𝑑𝑋𝑋1 = � 𝜕𝜕𝐺𝐺
𝜕𝜕𝑋𝑋2

�
𝑃𝑃,𝑇𝑇

𝑑𝑑𝑋𝑋2, the subscript “i” can be dropped. For an activation process, 

this expression is redressed as 𝜇𝜇1
‡𝑑𝑑𝑛𝑛1 + 𝜇𝜇2

‡𝑑𝑑𝑛𝑛2 = �𝜕𝜕∆𝐺𝐺
‡

𝜕𝜕𝑋𝑋
�
𝑃𝑃,𝑇𝑇

𝑑𝑑𝑋𝑋, in which 𝜇𝜇𝑖𝑖
‡ = �𝜕𝜕∆𝐺𝐺

‡

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑃𝑃,𝑇𝑇,𝑛𝑛𝑗𝑗≠𝑖𝑖

. 

 

Isobaric/Iso-mole Fraction Expression  

 

 The expression for ∂∆GP,X
‡  from Equation (2) is: 

 

∂∆𝐺𝐺𝑃𝑃,𝑋𝑋
‡ = −∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟

‡ 𝜕𝜕𝜕𝜕 + �𝜕𝜕∆𝐺𝐺
‡

𝜕𝜕𝜀𝜀𝑟𝑟
�
𝑃𝑃,𝑇𝑇,𝑋𝑋

𝜕𝜕𝜀𝜀𝑟𝑟        (S7) 

 

Integrating this expression with ∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟
‡  constant yields: 

 

∫ 𝜕𝜕∆𝐺𝐺𝑃𝑃,𝑋𝑋
‡∆𝐺𝐺𝑃𝑃,𝑋𝑋

‡

∆𝐺𝐺𝑃𝑃,𝑋𝑋,0
‡ = −∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟

‡ ∫ 𝜕𝜕𝜕𝜕𝑇𝑇
𝑇𝑇0

+ ∫ 𝜕𝜕∆𝐺𝐺𝑃𝑃,𝑇𝑇,𝑋𝑋
‡𝜀𝜀𝑟𝑟

𝜀𝜀𝑟𝑟,0
        

 

∆𝐺𝐺𝑃𝑃,𝑋𝑋
‡ = ∆𝐺𝐺𝑃𝑃,𝑋𝑋,0

‡ − ∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟
‡ (𝜕𝜕 − 𝜕𝜕0) + ∆𝐺𝐺𝑃𝑃,𝑇𝑇,𝑋𝑋

‡ − ∆𝐺𝐺𝑃𝑃,𝑇𝑇,𝑋𝑋,0
‡       (S8) 

 

in which the subscript “0” denotes reference values, and ∆𝐺𝐺𝑃𝑃,𝑇𝑇,𝑋𝑋
‡  is functionally dependent only 

on εr. Using the Kirkwood-Onsager model for the term, ∆𝐺𝐺𝑃𝑃,𝑇𝑇,𝑋𝑋
‡ − ∆𝐺𝐺𝑃𝑃,𝑇𝑇,𝑋𝑋,0

‡ , yields the following 
result:  
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∆𝐺𝐺𝑃𝑃,𝑋𝑋
‡ = ∆𝐺𝐺𝑃𝑃,𝑋𝑋,0

‡ − ∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟
‡ (𝜕𝜕 − 𝜕𝜕0) − 3𝐴𝐴𝐴𝐴�𝜀𝜀𝑟𝑟−𝜀𝜀𝑟𝑟,0�

(2𝜀𝜀𝑟𝑟+1)�2𝜀𝜀𝑟𝑟,0+1�
      (S9) 

 

The regression parameters are ∆𝐺𝐺𝑃𝑃,𝑋𝑋,0
‡ , ∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟

‡ , and Q.  

 

Isobaric/Isodielectric Expression 

 

 The expression for 𝜕𝜕∆𝐺𝐺𝑃𝑃,𝜀𝜀𝑟𝑟
‡  from Equation (2) is: 

 

𝜕𝜕∆𝐺𝐺𝑃𝑃,𝜀𝜀𝑟𝑟
‡ = −∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟

‡ 𝜕𝜕𝜕𝜕 + �𝜕𝜕∆𝐺𝐺
‡

𝜕𝜕𝑋𝑋
�
𝑃𝑃,𝑇𝑇,𝜀𝜀𝑟𝑟

𝜕𝜕𝑋𝑋        (S10) 

 

Using our empirical mole fraction model for the term, �𝜕𝜕∆𝐺𝐺
‡

𝜕𝜕𝑋𝑋
�
𝑃𝑃,𝑇𝑇,𝜀𝜀𝑟𝑟

, yields the following result 

upon integration: 

 

∆𝐺𝐺𝑃𝑃,𝜀𝜀𝑟𝑟
‡ = ∆𝐺𝐺𝑃𝑃,𝜀𝜀𝑟𝑟,0

‡ − ∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟
‡ (𝜕𝜕 − 𝜕𝜕0) + 𝛼𝛼

𝛾𝛾+1
�𝑋𝑋𝛾𝛾+1 − 𝑋𝑋0

𝛾𝛾+1�     (S11) 

 

The regression parameters are ∆𝐺𝐺𝑃𝑃,𝜀𝜀𝑟𝑟,0
‡ , ∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟

‡ , α, and γ. 

  

Isobaric/Isothermal Expression 

 

 The expression for 𝜕𝜕∆𝐺𝐺𝑃𝑃,𝑋𝑋
‡  from Equation (2) is: 

 

𝜕𝜕∆𝐺𝐺𝑃𝑃,𝑋𝑋
‡ = �𝜕𝜕∆𝐺𝐺

‡

𝜕𝜕𝑋𝑋
�
𝑃𝑃,𝑇𝑇,𝜀𝜀𝑟𝑟

𝑑𝑑𝑋𝑋 + �𝜕𝜕∆𝐺𝐺
‡

𝜕𝜕𝜀𝜀𝑟𝑟
�
𝑃𝑃,𝑇𝑇,𝑋𝑋

𝑑𝑑𝜀𝜀𝑟𝑟        (S12) 

 

Using the solvent models presented earlier, Equation (S12) can be integrated to yield: 
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∆𝐺𝐺𝑃𝑃,𝑇𝑇
‡ = ∆𝐺𝐺𝑃𝑃,𝑇𝑇,0

‡ − 3𝐴𝐴𝐴𝐴�𝜀𝜀𝑟𝑟−𝜀𝜀𝑟𝑟,0�
(2𝜀𝜀𝑟𝑟+1)�2𝜀𝜀𝑟𝑟,0+1�

+ 𝛼𝛼
𝛾𝛾+1

�𝑋𝑋𝛾𝛾+1 − 𝑋𝑋0
𝛾𝛾+1�      (S13) 

 

The regression parameters are ∆𝐺𝐺𝑃𝑃,𝑇𝑇,0
‡ , Q, α, and γ. 

 

Regression Analyses for Composite Data Sets 

 

  Consider the following general function, f: 

 

yi = f��𝑎𝑎j�, xi�           (S14) 

 

in which y is the dependent variable, x is the independent variable, “i” represents a data point, 
and �𝑎𝑎j� represents the set of fitting parameters in the equation. Now suppose similar data sets 
are generated at different conditions such that the same number of data points is taken for each 
data set, and the independent variables have the same values. If the parameters are treated as 
constant for each data set, then the set of equations for each data point can be summed to yield 
the following composite expression: 

 
1
K
∑ yi,kk = 1

K
∑ fk��𝑎𝑎j�, xi�k             (S15) 

 

in which K is the number of data sets, and fk is the function specific to data set “k”. The 
advantage of this expression is only a single regression analysis is required, for which the fitted 
parameters represent the statistical averages over all the data sets. We note that Equation (S15) is 
not applicable if aj is not the same for the different experimental conditions represented by the 
summation index k.  
 In this work reaction rate data was acquired at several mole fractions under isobaric/iso-
mole fraction conditions using the same temperatures for each data set. An analysis was done 
using the following composite expression with temperature as the independent variable: 
 
1
K
∑ ∆𝐺𝐺𝑃𝑃,𝑋𝑋,i,k

‡
k = 1

K
∑ ∆𝐺𝐺𝑃𝑃,𝑋𝑋,0,k

‡ − ∆𝑆𝑆𝑃𝑃,𝑋𝑋,𝜀𝜀𝑟𝑟
‡

k (𝜕𝜕i − 𝜕𝜕0) − 3𝐴𝐴𝐴𝐴
K
∑ 𝜀𝜀𝑟𝑟,i,k−𝜀𝜀𝑟𝑟,0,k

�2𝜀𝜀𝑟𝑟,i,k+1��2𝜀𝜀𝑟𝑟,0,k+1�k     (S16) 

 

in which the summation is over the data sets for data point “i”.  


