ARTICLE

Supplementary Information

Inhibition of Mo-doping in Phase Transition from δ -MnO₂ to α -MnO₂ and their Application in Aqueous Zinc-ion Batteries

Yubin Liu*,^a Wenjie Chen,^a Jingjing Su,^a Xiaojing Zhao,^a Xiaoyang Pan^a

^a College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China

Fig. S1 XPS survey spectra of MnO₂ and Mo-MnO₂.

Please do not adjust margi

Fig. S2 High-resolution XPS spectra of (a) Mn 2p and (b) Mo 3d for MnO₂.

Fig. S3 Charge-discharge profiles of MnO_2 at different current densities of (a) 200 and (b) 2000 mA

g-1.

Fig. S4 Charge-discharge profiles of Mo-MnO₂ at different current densities of (a) 200 and (b) 2000 $$mA g^{-1}$$.

Fig. S5 Coulombic efficiency of MnO_2 and $Mo-MnO_2$ at different current densities of (a) 200 and (b) 2000 mA g⁻¹.

δ -MnO ₂	Discharge capacity (mA h g ⁻¹)	Current density (mA g ⁻¹)	Reference
Mo-MnO ₂	353.5 (after 100 cycles)	200	- This work
	72.6 (after 2500 cycles)	2000	
Ultrathin δ- MnO ₂ nanosheets	133 (after 100 cycles)	100	S1
Zn doped δ -MnO ₂	140 (after100 cycles)	200	- S2
	about 75 (after 500 cycles)	500	
Bi doped δ -MnO ₂	108 (after 5000 cycles)	3000	S3
δ -MnO ₂ nanodots	335 (after 100 cycles)	50	S4
Mo-pre-intercalated MnO ₂	159 (after 1000 cycles)	1000	85
δ- MnO2 nanoflower/graphite	113.4 (after100cycles)	400	S6
K-pre-intercalated δ -MnO ₂	about 250 (after 100 cycles)	100	- S7
	84 (after 1000 cycles)	1000	

Table 1 Summary of discharge capacity for various δ -MnO₂ as cathodes for AZIBs.

S1 C. Guo, H. Liu, J. Li, Z. Hou, J. Liang, J. Zhou, Y. Zhu and Y. Qian, Electrochim. Acta, 2019, 304, 370-377.

S2 W. Zhao, J. Fee, H. Khanna, S. March, N. Nisly, S. B. Rubio, C. Cui, Z. Li, S. L. Suib, J. Mater. Chem. A, 2022,10, 6762-6771 S3 L. Guo, Y. Yang, Y. Zhang, J. Li, X. Fan, D. Li, J. Solid State Electr., 2023, 27, 1443-1450.

- S4 H. Tang, W. Chen, N. Li, Z. Hu, L. Xiao, Y. Xie, L. Xi, L. Ni, Y. Zhu, Energy Storage Mater., 2022, 48, 335-343.
- S5 Z. Wang, K. Han, Q. Wan, Y. Fang, X. Qu, P. Li, ACS Appl. Mater. Interfaces, 2023, 15, 859-869.

S6 S. Khamsanga, R. Pornprasertsuk, T. Yonezawa, A. A. Mohamad, S. Kheawhom, Sci. Rep., 2019, 9, 8441.

S7 L. Liu, Y. Wu, L. Huang, K. Liu, B. Duployer, P. Rozier, P. Taberna, P. Simon, Adv. Energy Mater., 2021, 11, 2101287.