Supporting Information

Spectroscopic characterization of heteronuclear iron-chromium carbonyl

cluster anions

Chaoxian Chi*a,b Zhixiang Yang, b Bin Zeng, b Qifeng Qin, b and Luyan Meng*b,c

^a Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China

^b School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China

^c Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China

* Correspondence: chichaoxian@nbu.edu.cn (C. Chi); mly91055@163.com (L. Meng)

Fig. S1 Optimized structures of the $CrFe(CO)_4^-$ isomers calculated at the B3LYP/6-311+G(d) level, including the symmetry, electronic state, and the relative energy with ZPE correction of each isomer (ΔE in kJ/mol).

Fig. S2 Optimized structures of the nine lowest-energy isomers of the $CrFe(CO)_5^-$ cluster anions calculated at the B3LYP/6-311+G(d) level, including the symmetry, electronic state, and the relative energy with ZPE correction of each isomer (ΔE in kJ/mol).

Fig. S3 Optimized structures of the nine lowest-energy isomers of the $CrFe(CO)_6^-$ cluster anions calculated at the B3LYP/6-311+G(d) level, including the symmetry, electronic state, and the relative energy with ZPE correction of each isomer (ΔE in kJ/mol).

Fig. S4 Optimized structures of the nine lowest-energy isomers of the $CrFe(CO)_7$ cluster anions calculated at the B3LYP/6-311+G(d) level, including the symmetry, electronic state, and the relative energy with ZPE correction of each isomer (ΔE in kJ/mol).

Fig. S5 Optimized structures of the $CrFe(CO)_{8}$ isomers calculated at the B3LYP/6-311+G(d) level, including the symmetry, electronic state, and the relative energy with ZPE correction of each isomer (ΔE in kJ/mol).

Fig. S6 Optimized structures of the $CrFe(CO)_{9^{-}}$ isomers calculated at the B3LYP/6-311+G(d) level, including the symmetry, electronic state, and the relative energy with ZPE correction of each isomer (ΔE in kJ/mol).

Fig. S7 The photo-fragmentation mass spectra of the $CrFe(CO)_n$ (n=4-9) cluster anions (difference in mass spectra for a selected anion recorded with and without the photodissociation laser). The negative peak demonstrates the depletion of the mass-selected anion, whereas the positive peaks show the produced fragment anions.

 $CrFe(CO)_4$, C_{3v} , 6A_1 α-MO: SOMO-7

 $CrFe(CO)_6^-, C_s, {}^4A''$ α-МО: НОМО

 $CrFe(CO)_6$, C_{2v} , 4B_2 α-MO: SOMO

 $CrFe(CO)_7$, C_s , ²A' α-MO: SOMO-4

 $CrFe(CO)_{8}^{-}, C_{2v}^{-}, {}^{2}B_{1}^{-}$ α-MO: SOMO-6

 $CrFe(CO)_4$, C_{3v} , 6A_1 β–MO: HOMO-2

CrFe(CO)₆⁻, C_s, ⁴A["] β–ΜΟ: ΗΟΜΟ

 $CrFe(CO)_6$, C_{2v} , 4B_2 β–MO: HOMO-1

 $CrFe(CO)_7$, C_s , ²A' β–MO: HOMO-4

CrFe(CO)8⁻, C_{2v}, ²B₁ β–MO: HOMO**-**6

CrFe(CO)5, C3v, ⁶A2 α-MO: SOMO-2

CrFe(CO)₆⁻, C_{2v}, ⁴B₂ α-MO: SOMO-1

 $CrFe(CO)_{7}^{-}, C_{2v}^{-}, ^{2}A_{1}^{-}$ α-MO: SOMO-3

 $CrFe(CO)_{7}, C_{s}_{1}, {}^{2}A'$ α-MO: SOMO-4

CrFe(CO)₅⁻, C_{3v}, ⁶A₂ β–MO: HOMO-2

CrFe(CO)₆⁻, C_{2v}, ⁴B₂ β–MO: HOMO**-**2

 $CrFe(CO)_{7}^{-}, C_{2v}^{-}, ^{2}A_{1}^{-}$ β–MO: HOMO-3

 $CrFe(CO)_{7}^{-}, C_{s}_{1}^{-}, {}^{2}A'$ β-МО: НОМО-3

Fig. S8 The frontier bonding orbitals accounting for the Cr-Fe binding of the observed $CrFe(CO)_n^-$ (n = 4-8) cluster anions.

Table S1. Bonding characters of the most table isomer (9a) for the CrFe(CO)₉⁻ anion calculated at the

Structures	Cr-Fe		NBO Group Charge		Natural Charge		NBO net spin ^a /e	
	R (Å)	WBI	Fe(CO) ₄	Cr(CO) ₅	Fe	Cr	Fe	Cr
$CrFe(CO)_9^-(9a)$	2.914	0.28	-0.34	-0.66	-1.41	-2.49	1.01	0.01

B3LYP/6-311+G(d) Levels.

^a Net spin population on the Fe and Cr atoms.