Electronic supplementary information

A theoretical exploration of structural feature, mechanical, and optoelectronic properties of Aubased halide perovskites A2Au^IAuIIIX⁶

$(A = Rb, Cs; X = Cl, Br, I)$

Diwen Liu,*^a** Huihui Zeng,*^a* Huan Peng,*^a* and Rongjian Sa*^b**

*^a*School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China

Email: liudiwen1987@163.com

*^b*College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China Email: rjsa@mju.edu.cn

Computational details

The power conversion efficiency η of an absorber layer can be defined as $\eta = P_m/P_m$, where P_m is the maximum output power density and P_{in} is the total incident solar power density. The P_m can be derived by numerically maximizing *J* (the current density) \times *V* (voltage). The *J* for a solar cell illuminated under the photon flux *Isun* is given by the equation $J = J_{sc} - J_0(1 - e^{e^{V/kT}})(k$ is the Boltzmann's constant and *T* is the temperature). $J = J_{\text{SC}} - J_0(1 - e^{e^{V/kT}})$ (*k* is the Boltzmann's constant and The short-circuit current density J_{sc} is defined as $J_{sc} = e \int_{0}^{\infty} A(E) J_{sun}(E) dE$, where *e*, $A(E)$, and $I_{sun}(E)$ are the elementary charge, the photon absorptivity, and the standard AM1.5G solar spectrum at 300 K, respectively. The reverse saturation current J_0 ($J_0 = J_0^{nr} + J_0^r = J_0^r / f_r$ corresponds to the total electron-hole recombination current density at equilibrium in the dark. The fraction of radiative recombination current *f^r* is

computed by the expression $f_r = \exp(\frac{-g}{\sigma} - \frac{g}{\sigma})$, where E_a and E_a^{da} are the fundamental kT , \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots $E_a - E_a^{da}$ $f_r = \exp(\frac{-g - g}{\sqrt{g}})$, w *da* $f_r = \exp(\frac{E_g - E_g^{da}}{LT})$, where E_g and E_g^{da} are the fundamental and direct allowed band gaps, respectively. The J_0^r is calculated from the rate black-body photon absorption from the surrounding thermal bath through the front surface $J_0^r = e\pi \int_0^{\infty} A(E)I_{bb}(E, T) dE$, where $I_{bb}(E, T)$ is the black-body spectrum at room temperature. The $A(E)$ can be obtained from the relation $A(E) = 1 - e^{-2a(E)L}$, where L and $\alpha(E)$ are the film thickness and the absorption spectrum of the material, respectively. In addition, the open-circuit voltage V_{OC} is determined by the relationship $ln(1 + \frac{\sigma_{SC}}{I})$. Finally, the maximum *η* of a material can be evaluated once two ⁰ *J* J_{SC} Γ 11 1 Γ Γ e^{-x} , J_0 , $f = 1$, $f = 2$, $f = 1$ $V_{OC} = \frac{kT}{I} \ln(1 + \frac{J_{SC}}{I})$. Finally, the maximum η of a mate

parameters $\alpha(E)$ and f_r are obtained.