Electronic supplementary information

A theoretical exploration of structural feature, mechanical, and optoelectronic properties of Au-based halide perovskites A₂Au^IAu^{III}X₆

(A = Rb, Cs; X = Cl, Br, I)

Diwen Liu,^{a*} Huihui Zeng,^a Huan Peng,^a and Rongjian Sa^{b*}

^aSchool of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China Email: <u>liudiwen1987@163.com</u>

^bCollege of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China Email: rjsa@mju.edu.cn

Computational details

The power conversion efficiency η of an absorber layer can be defined as $\eta = P_m/P_{in}$, where P_m is the maximum output power density and P_{in} is the total incident solar power density. The P_m can be derived by numerically maximizing J (the current density) $\times V$ (voltage). The J for a solar cell illuminated under the photon flux I_{sun} is given by the equation $J = J_{SC} - J_0 (1 - e^{eV/kT})$ (k is the Boltzmann's constant and T is the temperature). The short-circuit current density J_{sc} is defined as $J_{SC} = e \int_0^\infty A(E) I_{sun}(E) dE$, where e, A(E), and $I_{sun}(E)$ are the elementary charge, the photon absorptivity, and the standard AM1.5G solar spectrum at 300 K, respectively. The reverse saturation current J_0 ($J_0 = J_0^{nr} + J_0^r = J_0^r / f_r$) corresponds to the total electron-hole recombination current f_r is computed by the expression $f_r = \exp(\frac{E_g - E_g^{da}}{kT})$, where E_g and E_g^{da} are the fundamental and direct allowed band gaps, respectively. The J_0^r is calculated from the rate black-body photon absorption from the surrounding thermal bath through the front surface $J_0^r = e\pi \int_0^\infty A(E)I_{bb}(E,T)dE$, where $I_{bb}(E, T)$ is the black-body spectrum at room temperature. The A(E) can be obtained from the relation $A(E) = 1 - e^{-2a(E)L}$, where L and $\alpha(E)$ are the film thickness and the absorption spectrum of the material, respectively. In addition, the open-circuit voltage V_{OC} is determined by the relationship $V_{OC} = \frac{kT}{e} \ln(1 + \frac{J_{SC}}{J_0})$. Finally, the maximum η of a material can be evaluated once two

parameters $\alpha(E)$ and f_r are obtained.