Supporting Information

Urchin-like CoP₃/Cu₃P Heterostructured Nanorods Supported on 3D Porous Copper Foam for High-Performance Non-Enzymatic Electrochemical Dopamine Sensors

L-T. D. Luu^{1,2,*}, M-X. Tran^{1,2}, D-L. Tri Nguyen^{1,2}, C-D. Nguyen^{3,#}

¹Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam.

²Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam.

³The University of Danang - University of Science and Education, Da Nang, 50000, Vietnam

*Corresponding author at: Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies,

Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam.

[#]Corresponding author at: The University of Danang - University of Science and Education, Da Nang, 50000, Vietnam.

E-mail address: l-t.d.luu@vlu.edu.vn (Dr. L-T. D. Luu)

cdn@ued.edu.vn (Dr. C. D. Nguyen)

Chemical reagents

Cobalt(III) sulfate heptahydrate (CoSO₄.7H₂O), copper(II) sulfate pentahydrate (CuSO₄.5H₂O), sodium hypophosphite monohydrate (NaH₂PO₂.H₂O), potassium hydroxide (KOH), urea ((NH₂)₂CO), and ethanol (C₂H₅OH) were purchased from Sigma-Aldrich.

Material Characterization

We obtained scanning electron microscopy images and energy-dispersive X-ray spectroscopy spectra on JEOL JSM-5300LV scanning electron microscope instrument. Transmission electron microscope, high-resolution TEM, and EDS elemental mapping images were achieved on a JEOL JEM-1230 transmission electron microscope instrument. The powder X-ray diffraction pattern was acquired on a Bruker D8 ADVANCE X-ray powder diffractometer.

Synthesis of CoP₃ NRs/CF

Initially, 0.79 g of CoSO₄.7H₂O and 0.789 g of urea were added to 37 mL of distilled water under stirring. Next, the mixture solution was poured in to 50 mL Teflon lined stainless steel autoclave with copper foam and maintained at 85 °C for 2 h. After the hydrothermal reaction have finished, the product was washed and dried at 60 °C overnight prior to annealing at 300 °C for 2 h in air. Finally, the obtained oxide sample was heated with NaH₂PO₂.H₂O at 300 °C for 2 h to form CoP₃ NRs/CF.

Figure S1. SEM images (A, B, and C) and EDS spectrum (D) of Co-Cu-O NRs/CF.

Figure S2. (A) XPS survey spectrum of the CoP₃/Cu₃P NRs/CF, and high-resolution XPS spectra of (B) Co 2p, (C) Cu 2p, and (D) P 2p in the CoP₃/Cu₃P NRs/CF.

Figure S3. Nyquist plots for various samples. ((1): 3D copper substrate, (2) CoP₃ NRs/CF, (3) Co-Cu-OH NRs/CF, (4) Co-Cu-O NRs/CF, and (5) CoP₃/Cu₃P NRs/CF) (inset: an equivalent circuit to simulate the Nyquist plots).

Figure S4. CV curves for (A) CoP_3/Cu_3P NRs/CF, (B) Co-Cu-O NRs/CF, (C) Co-Cu-OH NRs/CF, (D) CoP₃ NRs/CF, and (E) 3D copper substrate at various scan rates. (F) The C_{dl} values are determined using the current density as a function of scan rates (1) 3D copper substrate, (2) CoP₃ NRs/CF, (3) Co-Cu-OH NRs/CF, (4) Co-Cu-O NRs/CF, and (5) CoP₃/Cu₃P NRs/CF.

Figure S5. CV curves in 0.1 M KOH and 0.1 M KOH + 1 mM dopamine mediums at scan rate of 10 mV s⁻¹ of (A) copper foam, (B) Co-Cu-OH NRs/CF, (C) Cu-Cu-O NRs/CF, and (D) CoP₃ NRs/CF.

Figure S6. (A) Differential pulse voltammetry (DPV) current responses of the CoP₃/Cu₃P NRs/CF electrode obtained for various concentration of dopamine in 0.1 M KOH and (B) corresponding calibration plots of DPV responses *versus* dopamine concentrations.

Figure S7. CV curves of the CoP₃/Cu₃P NRs/CF electrode at scan rate of 10 mV s⁻¹ in different pH levels of 12.5, 13.0, 13.5, and 14.

Figure S8. Plot of response time of the non-enzymatic electrochemical dopamine sensor based on the CoP_3/Cu_3P NRs/CF.

Figure S9. (A) Amperometric I-t response of the sensor based on the CoP_3/Cu_3P NRs/CF to 1 mM dopamine over 2,500 s. (B) The stability of the sensor based on the CoP_3/Cu_3P NRs/CF to dopamine tested every two days by amperometric measurement.

Figure S10. The response currents of five runs of CoP₃/Cu₃P NRs/CF towards 1 mM dopamine.

Figure S11. (A) Chronoamperometric curves of the CoP₃/Cu₃P NRs/CF electrode in 0.1 M KOH solution with and without the addition of 1 mM dopamine. (B) Calibration curves of J_{cat}/J_d versus $t^{1/2}$. (C) Calibration curves of J versus t ^{-1/2} derived from the data of chronoamperometric curves.

Figure S12. CV curves of the CoP_3/Cu_3P NRs/CF under alkaline conditions (0.1 M KOH + 1 mM dopamine) and neutral conditions (0.1 M PBS + 1 mM dopamine) at room temperature.

Figure S13. Calibration curve for the current response to dopamine concentration of the CoP_3/Cu_3P NRs/CF in neutral conditions with physiological pH of 7.25 and at temperature of 36.6 °C.

Table S1. Comparison of detection range and limit detection between the CoP₃/Cu₃P NRs/CF sensor and other non-enzymatic electrochemical dopamine sensors based on transition metals and their compounds reported elsewhere.

Electrode materials	LOD	Linear	Reference
	(µM)	range (µM)	
ITO/pGO–GNP–pGO	1.28	0.1 - 30	Sensors 2017, 17(4), 861
PA-MNPs	14.1	10 - 1000	Mater. Sci. Eng. B 2012, 177,
			17, 1531-1537
rGO-WS2@Fe ₃ O ₄	2.74		Mater. Chem. Phys. 2022,
			287, 126283
Au-Cu ₂ O/rGO		10 - 90	
CoP ₃ /Cu ₃ P NRs/CF	0.51	0.2 to 2000	Present work

Commla	Added	Detected
Sample	(10 ⁻⁵ mol L ⁻¹)	(10 ⁻⁵ mol L ⁻¹)
1	0	86.42
2	0.04	90.19
3	0.05	93.98
4	0.1	101.54
5	0.15	109.28
6	0.15	107.31
7	0.3	117.83
8	0.8	160.73
9	2.0	280.24
10	4.0	481.67

Table S2. Results of dopamine detection in human urine sample using the CoP₃/Cu₃P NRs/CF sensor.