Supporting Information:

Development of QM/MM(ABEEM) Method for the Deprotonation of Neutral and Cation Radicals in G-tetrad and GGX(8-oxo-G) Tetrad

Yue Wang,‡ Linlin Liu,‡ Yue Gao, Jiayue Zhao, Cui Liu,* Lidong Gong,* Zhongzhi Yang

School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China

Corresponding authors E-mail address:

liuc@lnnu.edu.cn (Cui Liu)

gongjw@lnnu.edu.cn (Lidong Gong)

Tel: +86 411-82158977

Index

page

1 The hydrogen bond fitting functions of H_2O-H_2O and $H_3O^+-H_2O$, ABEEM PFF labels of 8-oxo-G⁺⁺ in GGX(8-oxo-G) tetrad, the linear correlations of charge distributions of G⁺⁺ in G-tetrad and X⁻ in GGX(8-oxo-G) tetrad calculated by QM/MM(ABEEM) and QM methods

Fig. S1 The different types of hydrogen bonds between water molecules (H₂O-H₂O and H₃O⁺-H₂O) are fitted by the distance ($R_{lp,H}$) between the lp electrons of the O atom and H atom.

Fig. S2 The ABEEM PFF label of each site of 8-oxo-G⁺⁺ in GGX(8-oxo-G) tetrad. The six digits beginning with 1 represent the atom site, the number beginning with 2 represents the σ bond site, the number beginning with 3 represents the *lp* electrons site, and the number beginning with 4 represents the π bond site.

Fig. S3 The linear correlations of charge distributions of RC, TS and PC during deprotonation of G^{+} in G-tetrad obtained by QM/MM(ABEEM) and QM methods.

Fig. S4 The linear correlations of charge distributions of RC, TS and PC during deprotonation of X[•] in GGX(8-oxo-G) tetrad obtained by QM/MM(ABEEM) and QM methods.

Fig. S5 The linear correlations of the atoms involved in bond-forming and bondbreaking calculated by QM/MM(ABEEM) and QM methods in the deprotonation process of G^{++} in G-tetrad.

Fig. S6 The linear correlations of the atoms involved in bond-forming and bond-
breaking obtained by QM/MM(ABEEM) and QM methods in the deprotonation
process of X^{\bullet} in GGX(8-oxo-G) tetrad.

2 Position of proton in the optimized structures and variations of each site in the QM/MM(ABEEM) method

Fig. S7 The position of proton in the optimized structures of RC, TS, and PC in the deprotonation of 8-oxo-G⁺⁺ in GGX(8-oxo-G) tetrad. Sodium ion (purple sphere), nitrogen atom (blue sphere), oxygen atom (red sphere), carbon atom (grey sphere) and hydrogen atom (white sphere).

Fig. S8 The position of proton in the optimized structures of RC, TS, and PC in the deprotonation of G1⁺⁺ in GGX(8-oxo-G) tetrad. Sodium ion (purple sphere), nitrogen atom (blue sphere), oxygen atom (red sphere), carbon atom (grey sphere) and hydrogen atom (white sphere).

Fig. S9 The position of proton in optimized structures of RC, TS, and PC in the deprotonation of G2[•] in GGX(8-oxo-G) tetrad. Sodium ion (purple sphere), nitrogen atom (blue sphere), oxygen atom (red sphere), carbon atom (grey sphere) and hydrogen atom (white sphere).

Fig. S10 Variations of each ABEEM site of RC, TS, and PC in the deprotonation of X[•] in GGX(8-oxo-G) tetrad.

3 The valence-state electronegativity piecewise function $\chi^*(r)$, charge distributions of 8-oxo-G⁺⁺, G1⁺⁺, and G2⁻ in GGX(8-oxo-G) tetrad, linear correlations at key stationary point calculated by QM/MM(ABEEM) and QM methods

Table S1 The $\chi^*(r)$ of N5 in the deprotonation of G⁺⁺ in G-tetrad (*r* represents the distance between N5 and H25)

Distances(Å)	Functions	Distances(Å)	Functions
1.67 < <i>r</i> ≤1.72	$3.525 - \frac{0.901}{1.0 + \exp \frac{r - 1.687}{0.069}}$	1.59 < r≤1.67	$3.674 - \frac{0.036}{1.0 + \exp \frac{r - 1.112}{0.2}}$
1.15 < r≤1.59	$4.032 - \frac{0.344}{1.0 + \exp{\frac{r - 1.373}{0.117}}}$	1.09 < r≤1.15	4.898 <i>r</i> + 5.468
1.06 < <i>r</i> ≤09	$3.546 - \frac{0.251}{1.0 + \exp\frac{r - 1.11}{0.01}}$		

Table S2 The $\chi^*(r)$ of H25 in the deprotonation of G⁺⁺ in G-tetrad (*r* represents the distance between H25 and O65)

Distances(Å)	Functions	Distances(Å)	Functions
$1.0 < r \le 1.02$	$3.126 - \frac{0.731}{1.0 + \exp \frac{r - 1.014}{0.012}}$	$1.02 < r \le 1.05$	7.273 <i>r</i> + 5.358
1.05 < <i>r</i> ≤1.37	$21.523r^2 - 57.144r + 39.25$	1.37 < <i>r</i> ≤1.54	$1.755 - \frac{1.501}{1.0 + \exp{\frac{r - 1.490}{0.301}}}$
1.54 < <i>r</i> ≤1.60	$2.44 - \frac{0.79}{1.0 + \exp \frac{r - 1.58}{0.301}}$		

Distances(Å)	Functions	Distances(Å)	Functions
$1.0 < r \le 1.02$	$4.2 - \frac{2.001}{1.0 + \exp{\frac{r - 1.005}{0.008}}}$	$1.02 < r \le 1.05$	2.545r + 5.917
1.05 < <i>r</i> ≤1.37	$9.178r^2 - 16.45r + 39.25$	1.37 < <i>r</i> ≤1.54	$4.620 - \frac{2.711}{1.0 + \exp\left(\frac{r - 1.5}{0.355}\right)}$
1.54 < <i>r</i> ≤1.60	$3.58 - \frac{0.401}{1.0 + \exp \frac{r - 1.58}{0.075}}$		

Table S3 The $\chi^*(r)$ of O65 in the deprotonation of G^{•+} in G-tetrad (*r* represents the distance between O65 and H25)

Table S4 The $\chi^*(r)$ of H66 in the deprotonation of G⁺⁺ in G-tetrad (*r* represents the distance between H66 and O68)

Distances(Å)	Functions	Distances(Å)	Functions
1.11 < <i>r</i> ≤1.14	$2.09 - \frac{0.001}{1.0 + \exp\frac{r - 1.59}{0.118}}$	1.14 < <i>r</i> ≤1.20	0.406 <i>r</i> + 1.981
1.20 < <i>r</i> ≤1.49	$3.098 - \frac{0.820}{1.0 + \exp{\frac{r - 1.455}{0.022}}}$	1.49 < <i>r</i> ≤1.54	$2.425 - \frac{0.455}{1.0 + \exp\frac{r - 1.59}{0.118}}$

Table S5 The $\chi^*(r)$ of O68 in the deprotonation of G^{•+} in G-tetrad (*r* represents the distance between O68 and H66)

Distances(Å)	Functions	Distances(Å)	Functions
1.11 < <i>r</i> ≤1.14	$2.09 - \frac{0.001}{1.0 + \exp \frac{r - 1.59}{0.118}}$	1.14 < <i>r</i> ≤1.20	1.375 <i>r</i> +1.416
$1.20 < r \le 1.49$	$-0.707r^2 + 3.512r - 0.051$	1.49 < <i>r</i> ≤1.63	$4.268 - \frac{1.5}{1.0 + \exp{\frac{r - 1.55}{0.9}}}$
1.63 < <i>r</i> ≤1.7	$3.2 - \frac{0.19}{1.0 + \exp{\frac{r - 1.667}{1.105}}}$		

Distances(Å)	Functions	Distances(Å)	Functions
1.06< <i>r</i> ≤1.0725	$3.193 - \frac{0.081}{1.0 + \exp{\frac{r - 1.070}{0.002}}}$	1.484< <i>r</i> ≤1.60	2.654
1.0725 <r≤1.08< td=""><td>$3.740 + \frac{0.289}{1.0 + \exp{\frac{r - 1.075}{0.080}}}$</td><td>1.60<<i>r</i>≤1.72</td><td>$3.480 - \frac{1.591}{1.0 + \exp \frac{r - 1.656}{0.005}}$</td></r≤1.08<>	$3.740 + \frac{0.289}{1.0 + \exp{\frac{r - 1.075}{0.080}}}$	1.60< <i>r</i> ≤1.72	$3.480 - \frac{1.591}{1.0 + \exp \frac{r - 1.656}{0.005}}$
1.08< <i>r</i> ≤1.484	$-1.232r^2 + 4.369r + 0.628$		

Table S6 The $\chi^*(r)$ of N22 in the deprotonation of X[•] in GGX(8-oxo-G) tetrad (*r* represents the distance between N22 and H23)

Table S7 The $\chi^*(r)$ of O65 in the deprotonation of X[•] in GGX(8-oxo-G) tetrad (*r* represents the distance between H63 and O65)

Distances(Å)	Functions	Distances(Å)	Functions
1.58 <r≤1.71< td=""><td>$3.207 + \frac{0.095}{1.0 + \exp{\frac{r - 1.560}{1.100}}}$</td><td>1.12≤<i>r</i>≤1.15</td><td>-0.764r + 3.378</td></r≤1.71<>	$3.207 + \frac{0.095}{1.0 + \exp{\frac{r - 1.560}{1.100}}}$	1.12≤ <i>r</i> ≤1.15	-0.764r + 3.378
1.51< <i>r</i> ≤1.58	0.352r +2.983	1.11< <i>r</i> ≤1.12	9.062 <i>r</i> – 7.552
1.15 <r≤1.51< td=""><td>$3.570 - \frac{3.889}{1.0 + \exp{\frac{r - 1.012}{0.127}}}$</td><td></td><td></td></r≤1.51<>	$3.570 - \frac{3.889}{1.0 + \exp{\frac{r - 1.012}{0.127}}}$		

Table S8 The $\chi^*(r)$ of H23 in the deprotonation of X[•] in GGX(8-oxo-G) tetrad (*r* represents the distance between H23 and O62)

Distances(Å)	Functions	Distances(Å)	Functions
1.57< <i>r</i> ≤1.60	$2.312 + \frac{0.790}{1.0 + \exp{\frac{r - 1.573}{0.200}}}$	1.02< <i>r</i> ≤1.11	-9.536 <i>r</i> +12.697
1.36 <r≤157< td=""><td>$2.432 + \frac{0.012}{1.0 + \exp{\frac{r - 1.560}{0.226}}}$</td><td>1.009<<i>r</i>≤1.02</td><td>3.730<i>r</i> – 1.216</td></r≤157<>	$2.432 + \frac{0.012}{1.0 + \exp{\frac{r - 1.560}{0.226}}}$	1.009< <i>r</i> ≤1.02	3.730 <i>r</i> – 1.216
1.45 <r≤1.56< td=""><td>$10.020r^2 - 31.025r + 26.368$</td><td>1.00<<i>r</i>≤1.009</td><td>23.121<i>r</i> – 20.758</td></r≤1.56<>	$10.020r^2 - 31.025r + 26.368$	1.00< <i>r</i> ≤1.009	23.121 <i>r</i> – 20.758
1.11< <i>r</i> ≤1.45	$19.472r^2 - 50.990r + 35.470$		

Distances(Å)	Functions	Distances(Å)	Functions
1.52< <i>r</i> ≤1.72	$2.400 + \frac{0.415}{1.0 + \exp \frac{r - 1.590}{0.118}}$	1.3< <i>r</i> ≤1.35	$20.269r^2 - 51.565r + 35.030$
1.35< <i>r</i> ≤1.49	2.970 <i>r</i> -1.734	1.11< <i>r</i> ≤1.30	0.647r +1.937

Table S9 The $\chi^*(r)$ of H63 in the deprotonation of X[•] in GGX(8-oxo-G) tetrad (*r* represents the distance between H63 and O65)

Table S10 The $\chi^*(r)$ of O62 in the deprotonation of X[•] in GGX(8-oxo-G) tetrad (*r* represents the distance between H23 and O62)

Distances(Å)	Functions	Distances(Å)	Functions
1.55 <r≤1.60< td=""><td>$3.525 - \frac{0.251}{1.0 + \exp\frac{r - 1.580}{0.075}}$</td><td>1.015<r≤1.11< td=""><td>$3.181 + \frac{1.105}{1.0 + \exp{\frac{r - 1.032}{0.005}}}$</td></r≤1.11<></td></r≤1.60<>	$3.525 - \frac{0.251}{1.0 + \exp\frac{r - 1.580}{0.075}}$	1.015 <r≤1.11< td=""><td>$3.181 + \frac{1.105}{1.0 + \exp{\frac{r - 1.032}{0.005}}}$</td></r≤1.11<>	$3.181 + \frac{1.105}{1.0 + \exp{\frac{r - 1.032}{0.005}}}$
1.37< <i>r</i> ≤155	$4.400 - \frac{2.211}{1.0 + \exp{\frac{r - 1.500}{0.355}}}$	1.0< <i>r</i> ≤1.015	$3.840 + \frac{0.276}{1.0 + \exp{\frac{r - 1.025}{0.300}}}$
1.11 ≤ <i>r</i> ≤1.37	5.949 <i>r</i> – 3.199		

Structure	RC	TS	РС
G1	0.14	0.10	0.09
G2	0.11	0.11	0.11
Х	0.13	0.13	0.13
8-oxo-G ^{.+}	0.80		
8-oxo-G (-H) ⁻		0.14	0.12
W1	0.04		0.15
W1…H…W2		0.73	
W2	0.01		
W2…H			0.59
W3	0.05	0.09	0.10
Na^+	0.71	0.71	0.71

Table S11 Charge (|e|) distributions of 8-oxo-G*+ in GGX(8-oxo-G) tetrad

Table S12 Charge (|e|) distributions of G1⁺⁺ in GGX(8-oxo-G) tetrad

Structure	RC	TS	РС
8-oxo-G	0.06	0.05	0.05
G2	0.16	0.10	0.10
Х	0.16	0.15	0.15
G1 ^{.+}	0.63		
G1(-H) ⁻		0.16	0.14
W1	0.05		0.16
W1…H…W2		0.74	
W2	0.01		
W2…H			0.59
W3	0.05	0.09	0.10
Na ⁺	0.71	0.71	0.71

Structure	RC	TS	PC
G1	0.10	0.11	0.11
8-oxo-G	0.99	0.04	0.04
Х	0.19	0.15	0.15
G2 ⁻	-0.09		
G2(-H) ⁻		0.16	0.14
W1	0.03		0.16
W1…H…W2		0.74	
W2	0.01		
W2…H			0.59
W3	0.04	0.09	0.10
Na ⁺	0.72	0.71	0.71

Table S13 Charge (|e|) distributions of G2[•] in GGX(8-oxo-G) tetrad

Local conservation		Local conservation		Local conservation	
condition 1		condition 2		condition 3	
Reaction path	R	Reaction path	R	Reaction path	R
1	0.98	46	0.97	53	0.97
4	0.98	50	0.97	57	0.97
7	0.98	-	-	59	0.97
10	0.98	-	-	63	0.97
13	0.98	-	-	-	-
16	0.98	-	-	-	-
19	0.98	-	-	-	-
22	0.98	-	-	-	-
25	0.98	-	-	-	-
28	0.98	-	-	-	-
31	0.98	-	-	-	-
37	0.98	-	-	-	-
40	0.98	-	-	-	-
43	0.98	-	-	-	-

Table S14 The linear correlations at each stationary point calculated by QM/MM(ABEEM) and QM methods in the deprotonation of G^{+} in G-tetrad

Local conservation		Local conservation		Local conservation	
condition 1		condition 2		condition 3	
Reaction path	R	Reaction path	R	Reaction path	R
1	0.98	46	0.97	53	0.98
4	0.98	50	0.97	57	0.98
7	0.98	-	-	59	0.98
10	0.98	-	-	63	0.98
13	0.98	-	-		
16	0.98	-	-		
19	0.98	-	-	-	-
22	0.98	-	-	-	-
25	0.98	-	-	-	-
28	0.98	-	-	-	-
31	0.98	-	-	-	-
37	0.98	-	-	-	-
40	0.98	-	-	-	-
43	0.98	-	-	-	-

Table S15 The linear correlations of at each stationary point calculated by QM/MM(ABEEM) and QM methods in the deprotonation of X[•] in GGX(8-oxo-G) tetrad