Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Figure S1. The enthalpies of formation predicted by variable-composition evolutionary computations for the Mn–B system at (a) 50 GPa, (b) 100 GPa and (c) 200 GPa. Every circle represents an individual structure and the most stable ground-state phases (black circles) are connected to form the convex hull.

Table S1. Lattices Parameters and atomic coordinates of Cmcm-Mn₂B₃ at ambient pressure.

	Lattices Parameters (Å)	Atoms	х	У	Z
	a = 2.952	Mn (4c)	0.00000	0.20468	0.75000
Cmcm-Mn ₂ B ₃	b = 17.957	Mn (4c)	0.00000	0.07245	1.25000
	c = 2.965	B (4c)	0.50000	0.97591	1.25000
P = 0 GPa	$\alpha=\beta=\gamma=90^o$	B (4c)	0.50000	0.17365	1.25000
		B (4c)	0.50000	0.88011	1.25000

Table S2. Lattices Parameters and atomic coordinates of C2/m-Mn₂B₃ at ambient pressure.

	Lattices Parameters (Å)	Atoms	x	у	Z
	a = 7.554	Mn (4i)	0.05607	0.50000	0.85428
C2/m-Mn ₂ B ₃	b = 2.953	Mn (4i)	0.20309	0.50000	0.61177
	c = 8.114	B (4i)	0.25716	0.50000	0.18584
P = 0 GPa	$\alpha = \gamma = 90^{\circ}$	B (4i)	0.48782	0.50000	0.60603
	β=121.107°	B (4i)	0.12637	0.00000	0.08799

Table	S3 .	Lattices	Parameters	and	atomic	coordinates	of	$C2/c-Mn_2B_3$	at	ambient
pressu	re.									

	Lattices Parameters (Å)	Atoms	x	у	Z
a = 6.968		Mn (8f)	0.35295	0.36384	0.35411
$C2/c-Mn_2B_3$	b = 4.025				
	c = 5.507	B (8f)	0.13691	0.36249	0.00206
P = 0 GPa	$\alpha = \gamma = 90^{\circ}$	D (4)	0.00000	0.65604	0.75000
	β=150.324°	в (4е)	0.00000	0.03684	0.75000

C12D3.				
Phase	a (Å)	b (Å)	c (Å)	V (Å ³)
Mn ₂ B ₃	2.952	17.957	2.965	157.216
Cr ₂ B ₃	2.930	18.170	2.949	156.977
	3.027ª	19.119ª	2.954ª	162.016ª
V ₂ B ₃	3.034	18.408	2.979	166.325
	3.061 ^b	18.400 ^b	2.984 ^b	168.066 ^b
Nb ₂ B ₃	3.324	19.603	3.141	204.711
	3.306°	19.481°	3.129c ^b	201.528°
Ti ₂ B ₃	3.243	19.024	3.038	187.422
	3.243 ^d	19.025 ^d	3.038 ^d	187.431 ^d

Table S4. Unit cell parameters of binary borides Ti_2B_3 , Mn_2B_3 , Nb_2B_3 , V_2B_3 and Cr_2B_3 .

Ref a: Okada S.; Atoda T.; Higashi I. Structural investigation of Cr₂B₃, Cr₃B₄, and CrB by single-crystal diffractometry. *J. Solid State Chem.* **1987**, *68*, 61-67.

Ref b: Spear, K. E, Gilles, P. W. Phase and structure relationships in the vanadium-boron system. *HIGH TEMP* SCI. 1969, 1, 86-97.

Ref c: Yu, Y.; Tergenius, L. E.; Lundström, T.;Okada, S., A structural investigation of V₂B₃ by single-crystal diffractometry. *J. Alloys Compd.* **1995**, *221*, 86-90.

Ref d: Li, P. F.; Zhou, R. L.;Xiao, C. Z., Computational Analysis of Stable Hard Structures in the Ti–B System, *ACS Appl. Mater. Interfaces.* 2015, *7*, 15607.

Figure S2. Phonon dispersion curves and phonon density of states for Cmcm-Mn₂B₃, at (a) 0 GPa. C2/m-Mn₂B₃, at (b) 0 GPa and (c) 80 GPa. C2/c-Mn₂B₃, at (d) 0 GPa and (e) 200 GPa.

Phase	C	C ₂₂	C	C	C	C	C	C	C	C	C	C	C
(SG)	C_{11}	C_{22}	C ₃₃	C ₄₄	C55	C ₆₆	C_{12}	C_{13}	C ₁₅	C_{23}	C ₂₅	C35	C ₄₆
Mn_2B_3	221	401	526	205	172	155	101	125		127			
(Cmcm)	321	1 401 5	320	203	172	155	101	123		127			
Cr_2B_3	450	450 596 5	502	217	210	193	170			160			
(Cmcm)	430		393	217	219	162	1/8	191		109			
V_2B_3	406	654	640	245	255	224	120	149		112			
(Cmcm)	490	034	040	243	255	224	138	148		112			
Nb_2B_3	472	527	571	215	226	222	172	150		120			
(Cmcm)	472	537 57	574	5/4 215	250	223	1/2	139		129			
Ti_2B_3	120	542	505	227	244	210	110	109		70			
(Cmcm)	438	545	393	237	244	210	119	108		/0			
Mn_2B_3	420	404	420	100	155	172	127	104	24	170	10	62	17
(<i>C</i> 2/ <i>m</i>)	430	494	430	100	155	172	127	194	24	1/9	-10	03	17
Mn_2B_3	420	170	110	151	100	02	227	220	22	100	20	17	25
(<i>C</i> 2/ <i>c</i>)	439	439 478	/8 448 1	131	151 190	93	227	230	-23	199	38	-1/	23

Table S5. Elastic constants of TM_2B_3s (SG: *Cmcm*) including Mn_2B_3 , Cr_2B_3 , V_2B_3 , Nb_2B_3 , and Ti_2B_3 , as well as C2/m- and C2/c-Mn₂B₃ at ambient pressure.

Table S6 Calculated bond parameters and Vickers hardness of Mn₂B₃(SG:Cmcm).

	1				
Bond type	$d^{\mu}(\text{\AA})$	$v_b^{\mu}(\text{\AA}^3)$	Р	$f_m(\times 10^{-3})$	$H_{v}(\text{GPa})$
B-B	1.709	0.661	0.98	0	20.0
	1.719	0.673	0.95	0	
	1.798	0.770	0.81	0	
	2.952	3.409	0.06	0	
	2.952	3.409	0.04	0	
Mn-B	2.061	1.160	0.04	5.940	
	2.134	1.288	0.26	5.940	
	2.235	1.479	0.34	5.940	
	2.261	1.532	0.05	5.940	
	2.261	1.532	0.09	5.940	
	2.263	1.536	0.05	5.940	
	2.386	1.800	0.05	5.940	
Mn-Mn	2.952	3.409	0.03	5.940	
	2.965	3.454	0.09	5.940	

Bond type	$d^{\mu}(\text{\AA})$	$v_b^{\mu}(\text{\AA}^3)$	Р	$f_m(\times 10^{-3})$	$H_v(GPa)$
B-B	1.707	0.634	0.88	0	29.9
	1.729	0.659	0.82	0	
	1.766	0.702	0.76	0	
	2.930	3.208	0.05	0	
	2.930	3.208	0.02	0	
	2.930	3.208	0.03	0	
Cr-B	2.119	1.214	0.02	2.314	
	2.152	1.271	0.21	2.314	
	2.247	1.447	0.07	2.314	
	2.255	1.462	0.05	2.314	
	2.264	1.480	0.25	2.314	
	2.270	1.492	0.02	2.314	
	2.342	1.638	0.04	2.314	
Cr-Cr	2.930	3.208	0.07	2.314	
_	2.949	3.271	0.02	2.314	

Table S7 Calculated bond parameters and Vickers hardness of Cr₂B₃(SG:*Cmcm*).

 Table S8 Calculated bond parameters and Vickers hardness of V2B3(SG:Cmcm).

Bond type	$d^{\mu}(\text{\AA})$	$v_b^{\mu}(\text{\AA}^3)$	Р	$f_m(imes 10^{-3})$	H_v (GPa)
B-B	1.724	0.893	0.89	0	22.9
	1.729	0.901	0.85	0	
	1.760	0.950	0.82	0	
V-B	2.230	1.932	0.18	1.542	
	2.293	2.101	0.04	1.542	
	2.296	2.109	0.06	1.542	
	2.300	2.120	0.01	1.542	
	2.330	2.204	0.24	1.542	
	2.358	2.285	0.05	1.542	
V-V	2.979	4.607	0.08	1.542	

Table S9 Calculated bond parameters and Vickers hardness of Nb₂B₃(SG:*Cmcm*).

	<u>1</u>			2 5 (
Bond type	$d^{\mu}(\text{\AA})$	$v_b^{\mu}(\text{\AA}^3)$	Р	$f_m(\times 10^{-3})$	$H_v(GPa)$
B-B	1.808	1.009	0.81	0	22.7
	1.816	1.023	0.77	0	
	1.845	1.072	0.75	0	
Nb-B	2.403	2.369	0.20	1.113	
	2.460	2.542	0.05	1.113	
	2.462	2.548	0.09	1.113	
	2.508	2.693	0.08	1.113	
	2.601	3.004	0.24	1.113	
Nb-Nb	2.951	4.388	0.04	1.113	

Bond type	$d^{\mu}(\text{\AA})$	$v_b^{\mu}(\text{\AA}^3)$	Р	$f_m(\times 10^{-3})$	$H_v(GPa)$
B-B	1.753	0.842	0.90	0	28.9
	1.758	0.849	0.84	0	
	1.773	0.871	0.87	0	
Ti-B	2.352	2.032	0.20	1.368	
	2.382	2.111	0.04	1.368	
	2.386	2.122	0.06	1.368	
	2.393	2.141	0.09	1.368	
	2.425	2.228	0.06	1.368	
	2.520	2.500	0.24	1.368	
Ti-Ti	2.828	3.533	0.07	1.368	

Table S10 Calculated bond parameters and Vickers hardness of Ti₂B₃(SG:*Cmcm*).

Table S11 Calculated bond parameters and Vickers hardness of $Mn_2B_3(SG:C2/m)$.

Bond type	$d^{\mu}(\text{\AA})$	$v_b^{\mu}(\text{Å}^3)$	Р	$f_m(\times 10^{-3})$	$H_{v}(\text{GPa})$
B-B	1.714	1.444	0.82	0	20.9
	1.727	1.478	1.78	0	
	1.780	1.618	0.73	0	
	1.834	1.770	0.71	0	
	2.782	6.176	0.06	0	
Mn-B	2.073	2.555	0.22	3.458	
	2.162	2.899	0.12	3.458	
	2.168	2.923	0.23	3.458	
	2.190	3.013	0.48	3.458	
	2.192	3.021	0.12	3.458	
	2.195	3.034	0.29	3.458	
	2.203	3.067	0.12	3.458	
	2.246	3.25	0.02	3.458	
	2.428	4.106	0.24	3.458	

Table S12 Calculated bond parameters and Vickers hardness of Mn₂B₃(SG:C2/c).

Bond type	$d^{\mu}(\text{\AA})$	$v_{\rm b}^{\mu}({\rm \AA}^3)$	Р	$f_m(\times 10^{-3})$	$H_v(GPa)$
B-B	1.791	0.990	0.79	0	15.6
	1.854	1.099	0.69	0	
	1.938	1.255	0.57	0	
	2.232	1.917	0.04	0	
Mn-B	2.147	1.706	0.14	5.507	
	2.158	1.732	0.04	5.507	
	2.159	1.735	0.15	5.507	
	2.163	1.744	0.28	5.507	
	2.294	2.081	0.13	5.507	
	2.328	2.175	0.11	5.507	
	2.391	2.356	0.01	5.507	
Mn-Mn	2.565	2.909	0.01	5.507	

Table S13. The Bader charge analysis of five TM_2B_3s (TM = Mn, Cr, V, Nb and Ti), C2/m- and C2/c-Mn₂B₃ in 2×2×1 cells. The positive (negative) sign denotes the loss (gain) of electrons. There is the number of atoms in brackets.

	TM (e)	B (e)
Mn ₂ B ₃	+0.55 (16), +0.78 (16)	-0.38 (8), -0.41 (8), -0.46 (16), -0.47 (16)
Cr ₂ B ₃	+0.69 (16), +0.89 (16)	-0.45 (8), -0.49 (8), -0.51 (16), -0.59 (16)
V ₂ B ₃	+1.12 (16), +0.87 (16)	-0.59 (8), -0.61 (16), -0.63 (8), -0.78 (16)
Nb ₂ B ₃	+0.95 (16), +1.28 (16)	-0.61 (8), -0.63 (8), -0.74 (16), -0.88 (16)
Ti ₂ B ₃	+1.04 (16), +1.29 (16)	-0.64 (4), -0.68 (20), -0. 66 (8), -0.99 (2), -1.00 (14),
C2/m-Mn ₂ B ₃	+0.53 (16), +0.78 (16)	-0.36 (8), -0.38 (8), -0.44 (8), -0.45 (24),
$C2/c-Mn_2B_3$	+0.56 (32)	-0.16 (16), -0.48 (32)

Table S14. The averaged –ICOHP values (in eV/per bond) and bond lengths (Å) computed for some stronger TM-B and B-B bonds in five TM_2B_3s (TM = Mn, Cr, V, Nb and Ti), C2/m- and C2/c-Mn₂B₃.

	TM-B, B-B	bond length	-ICOHP
		2.185	1.282
	Mn-B	2.165	0.843
Mr. D		2.121	0.782
MIII ₂ B ₃	B-B	1.720	3.615
		1.717	3.525
		1.769	3.151
	Cr-B	2.262	2.185
		2.151	1.933
Cr P		2.117	1.769
CI ₂ D ₃	B-B	1.706	6.869
		1.732	6.735
		1.766	6.601
	V-B	2.318	2.198
		2.229	1.801
VD		2.212	1.518
v ₂ D ₃	B-B	1.732	6.914
		1.725	6.867
		1.761	6.404
	Nb-B	2.403	2.193
		2.602	1.984
NIL D		2.379	1.925
1102D3		1.817	6.051
	B-B	1.809	5.901
		1.843	5.549

	Ti-B	2.510	1.862
		2.353	1.590
		2.341	1.256
	B-B	1.773	6.453
Ti_2B_3		1.761	6.624
		1.755	6.620
	Ti-Ti	2.819	0.772
		2.991	0.295
	Mn-B	2.175	1.234
		2.179	0.919
C^{2}/m Ma D		2.111	0.830
C_2/m -IVIII ₂ D ₃	B-B	1.723	3.299
		1.789	3.021
		1.822	2.891
$C2/c-Mn_2B_3$	Mn-B	2.153	1.527
		2.317	0.903
		2.161	0.792
	B-B	1.822	2.983
		1.838	2.702