Supplemental Material

High-performance and self-powered photodetectors from S-scheme Cs₂SnI₂Cl₂/Cs₂TiI₆ heterojunction: A DFT+NAMD study

Dongxiang Li*ab, Ruiqin Lia

^a College of Electronic and Information Engineering, Anshun University, Anshun, 561000, China

^b College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China

Table 1S Band gaps of Cs₂TiI₆ and Cs₂SnI₂CI₂ obtained by different methods

System	GGA-PBE	HSE06	HSE06+SOC	GGA_1/2	Experiment
Cs ₂ TiI ₆	0.86 eV	1.90 eV	1.7 eV ^[1]	1.03 eV	1.02 eV ^[2]
$Cs_2SnI_2CI_2$	1.59 eV	2.23 eV	2.07 eV ^[3]	2.34 eV	2.62 eV ^[4]

Table 2S Calculated effective masses of electrons and holes for Cs2SnI2CI2surface, Cs2TiI6 surface and Cs2SnI2CI2/Cs2TiI6 heterojunction

	$m_{h/}^{*}m_{0}$	$m_{e/}^*m_0$	$m_{h/}^{*}m_{0}$	$m_{e/}^{*}m_{0}$
	$\Gamma \rightarrow X$		$\Gamma \rightarrow M$	
$Cs_2SnI_2Cl_2/Cs_2TiI$	0.63	0.35	0.64	0.34
6				
$Cs_2SnI_2Cl_2$	1.03	0.40	1.05	1.43
	$M \rightarrow X$	$\Gamma \rightarrow X$	$M \rightarrow \Gamma$	$\Gamma \rightarrow M$
Cs ₂ TiI ₆	0.02	0.31	0.01	0.31

^{*} Corresponding author

E-mail: ldx0601@163.com (D. Li)

Fig. 1S Total energy and temperature fluctuations with respect to molecular dynamic steps at 300K for Cs₂SnI₂CI₂/Cs₂TiI₆ heterojunction

Fig. 28 The work functions of (a) Cs₂SnI₂CI₂ surface, (b) Cs₂TiI₆ surface and (c)

 $Cs_2SnI_2CI_2/Cs_2TiI_6$. E_v , E_f and E_p are vacuum level, fermi level and interface potential drop, respectively. (d) The planar-averaged charge density difference $\Delta \rho$ for $Cs_2SnI_2CI_2/Cs_2TiI_6$ heterojunction. The cyan and yellow sections show electron depletion and concentration, respectively.

References

- S. R. Kavanagh, C. N. Savory, S. M. Liga, G. Konstantatos, A. Walsh and D. O. Scanlon, J. Phys. Chem. Lett., 2022, 13, 10965.
- [2] M. G. Ju, M. Chen, Y. Zhou, H. F. Garces, J. Dai, L. Ma, N. P. Padture and X. C. Zeng, ACS Energy Lett., 2018, 3, 297.
- [3] Z. Xu, M. Chen and S. F. Liu, J. Phys. Chem. C, 2019, 123, 27978.
- [4] J. Li, C. C. Stoumpos, G. G. Trimarchi, I. Chung, L. Mao, M. Chen, M. R. Wasielewski, L. Wang and M. G. Kanatzidis, Chem. Mater., 2018, 30, 4847.