Supporting Information

A theoretical study on second-order nonlinear optical properties of

Pt(II) bis-acetylide complexes: substituent and redox effects

Liting Sun, Yingying Wang, Yuanyuan Zhao^{*} and Yongqing Qiu^{*}

Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China

^{*}Corresponding Author. Fax: +86043185099291

E-mail addresses: <u>yuanyuan-zhao@outlook.com</u> (Y. Y. Zhao)

^{*}Corresponding Author. Fax: +86043185098768.

E-mail addresses: <u>qiuyq466@nenu.edu.cn</u> (Y. Q. Qiu)

General Comments

Table S1 Calculated squared spin operator $\langle S^2 \rangle$ of complexes $1^{+/-} \cdot 5^{+/-}$.

Table S2 Weights of Pt , L_1 , L_2 , L_3 and L_4 ligands contributed to frontier molecular orbital.

Table S3 Obtained λ (nm), ΔE_{ge} (eV), f_{os} , $\Delta \mu_{ge}$ and major molecular orbital contributions of all studied complexes at the B3LYP-D3/6-311+G(d)/SDD level of theory.

Table S4 The dynamic β_{HRS} , DR, β_{J} , ρ , and $\Phi(\beta_{\text{J}})$ values of complexes 1-5 obtained at wavelength of 1064 nm and 1340 nm employing CAM-B3LYP/6-311+G(d)/SDD level of theory in DCM solvent.

Fig. S1 Spin density diagrams for one-electron reduced and oxidized species of complexes 1-5.

Fig. S2 Simulated absorption spectra of complex 1 in DCM solvent by four functionals and the experimental result (inset)⁴⁴ (The units of Abs: L/mol/cm).

Fig. S3 Molecular orbitals involved in crucial charge transitions of complexes 1-5 and $1^{+/-} 5^{+/-}$.

Fig. S4 Relationship between the β_{tot} values and the corresponding $\Delta \mu_{eg} f_{os} / \Delta E^3$ values for complexes 1-5.

Fig. S5 Plots of $-z\rho_{yy}^{(2)}$ for all studied complexes at the CAM-B3LYP/6-311G+(d)/SDD level of theory. Purple color represents a positive

value and blue color represents a negative value.

Complex	<s<sup>2></s<sup>	eigenvalue	Complex	<s<sup>2></s<sup>	eigenvalue
1+	0.757	0.75	3-	0.751	0.75
1	0.752	0.75	4^+	0.757	0.75
2 ⁺	0.757	0.75	4	0.752	0.75
2-	0.756	0.75	5^{+}	0.756	0.75
3 ⁺	0.756	0.75	5-	0.751	0.75

Table S1 Calculated squared spin operator $\langle S^2 \rangle$ of complexes $1^{+/-}-5^{+/-}$.

Table S2 Weights of Pt, L_1 , L_2 , L_3 and L_4 ligands contributed to frontier molecular orbital.

Complex	Frontier MOs	Pt	L ₁	L_2	L ₃	L ₄
1	L	13.94%	40.44%	3.12%	27.97%	14.53%
	Н	10.34%	81.68%	2.68%	2.57%	2.73%
2	L	1.29%	83.42%	13.57%	0.90%	0.82%
	Н	13.72%	3.76%	80.88%	0.23%	1.41%
3	L	15.10%	33.89%	5.49%	31.19%	14.33%
	Н	5.62%	89.51%	1.33%	1.63%	1.91%
4	L	0.020%	0.020%	99.70%	0.25%	0.01%
	Н	15.70%	12.61%	69.98%	0.31%	1.40%
5	L	15.43%	28.51%	5.67%	36.60%	13.80%
	Н	0.022%	99.91%	0.006%	0.004%	0.058%

Table S3 Obtained λ (nm), ΔE_{ge} (eV), f_{os} , $\Delta \mu_{ge}$ and major molecular orbital contributions of all studied complexes at the B3LYP-D3/6-311+G(d)/SDD level of theory.

Complex	λ	$\Delta E_{ m ge}$	$f_{ m os}$	$\Delta \mu_{ge}$	Major contributions
1+	589	2.11	0.239		β H-8 $\rightarrow\beta$ L(68%), β H-7 $\rightarrow\beta$ L(27%)
	310	4.00	0.322		α H \rightarrow α L(58%)
1	306	4.06	0.839	1.426	H→L(95%)
	276	4.49	0.395	3.472	H-2→L(64%), H-1→L+1(28%)
1	663	1.87	0.082		$\alpha H \rightarrow \alpha L + 1(97\%)$
	342	3.63	0.229		$\beta H \rightarrow \beta L(48\%)$
2 ⁺	613	2.02	0.146		β H-7 $\rightarrow\beta$ L(90%)
	363	3.42	0.462		α H-2 $\rightarrow\alpha$ L(32%), β H $\rightarrow\beta$ L+1(14%)
2	426	2.91	0.358	8.605	H→L(81%)
	399	3.11	0.632	6.624	H-1→L+1(58%), H-1→L(23%)
2-	422	2.94	0.654		α H-2 $\rightarrow\alpha$ L(17%), β H $\rightarrow\beta$ L(55%)
	399	3.11	0.315		α H-4 $\rightarrow\alpha$ L(22%), β H-1 $\rightarrow\beta$ L(36%)
3 ⁺	712	1.74	0.206		β H-2 $\rightarrow\beta$ L(78%)
	345	3.60	0.690		α H-1 $\rightarrow\alpha$ L(32%), α H $\rightarrow\alpha$ L(32%)
3	335	3.70	0.945	5.989	H→L(90%)
	287	4.32	0.465	2.694	H-1→L+4(45%), H-1→L+2(23%)
3-	736	1.69	0.083		$\alpha H \rightarrow \alpha L(94\%)$
	356	3.49	0.220		α H-1 $\rightarrow\alpha$ L(15%), β H $\rightarrow\beta$ L(43%)
4 ⁺	623	1.99	0.112		β H-6 $\rightarrow\beta$ L(88%)
	590	2.10	0.156		β H-9 $\rightarrow\beta$ L(53%), β H-10 $\rightarrow\beta$ L(18%)
4	309	4.02	0.684	1.487	H→L+4(93%)
	272	4.56	0.297	3.456	H-1→L+5(65%)
4⁻	330	3.76	0.339		$\beta H \rightarrow \beta L + 4(32\%),$ $\alpha H - 1 \rightarrow \alpha L + 3(28\%), \beta H \rightarrow \beta L + 3(20\%)$

	305	4.07	0.148		β H-7 $\rightarrow\beta$ L+2(33%), β H-6 $\rightarrow\beta$ L+2(15%)
5 ⁺	319	3.89	0.253		α H-1 $\rightarrow\alpha$ L(43%), β H-1 $\rightarrow\beta$ L+1(40%)
	271	4.58	0.142		α H-2 \rightarrow α L+1(42%)
5	300	4.13	0.406	3.371	H-3→L(74%)
	274	4.53	0.330	1.770	H-1→L+5(38%), H-6→L(22%)
5-	644	1.93	0.091		$\alpha H \rightarrow \alpha L(83\%)$
	341	3.64	0.078		β H-2 $\rightarrow\beta$ L(13%)

 $\overline{\text{Note: H} = \text{HOMO, L} = \text{LUMO.}}$

Table S4 The dynamic β_{HRS} , DR, β_{J} , ρ , and $\Phi(\beta_{\text{J}})$ values of complexes 1-5 obtained at wavelength of 1064 nm and 1340 nm employing CAM-B3LYP/6-311+G(d)/SDD level of theory in DCM solvent.

Complex	$\beta_{\rm HRS}$	DR	$ \beta_{J=1} $	$ \beta_{J=3} $	ρ	$\Phi(\beta_{J=1})$	$\Phi(\beta_{J=3})$			
	λ=1064nm									
1	7.90×10^{2}	2.09	8.41×10^{2}	2.20×10^{3}	2.62	0.28	0.72			
2	1.22×10^{4}	4.28	2.17×10^{4}	2.16×10^{4}	1.01	0.50	0.50			
3	2.35×10^{3}	3.67	3.93×10^{3}	4.70×10^{3}	1.20	0.45	0.55			
4	2.26×10^{3}	7.29	4.63×10^{3}	1.92×10^{3}	0.42	0.71	0.29			
5	5.61×10^{2}	6.28	1.11×10^{3}	6.42×10^{2}	0.58	0.63	0.37			
	λ=1340nm									
1	6.96×10^{2}	2.09	7.43×10^{2}	1.95×10^{3}	2.62	0.28	0.72			
2	7.84×10^{3}	4.16	1.38×10^{4}	1.42×10^{4}	1.03	0.49	0.51			
3	1.77×10^{3}	3.58	2.82×10^{3}	3.49×10^{3}	1.24	0.45	0.55			

4	1.80×10^{3}	6.93	3.65×10^{3}	1.72×10^{3}	0.47	0.68	0.32
5	4.79×10^{2}	6.24	9.48×10^{2}	5.53×10^{2}	0.58	0.63	0.37

Fig. S1 Spin density diagrams for one-electron reduced and oxidized species of complexes 1-5.

Fig. S2 Simulated absorption spectra of complex 1 in DCM solvent by four functionals and the experimental result $(inset)^{44}$ (The units of Abs: L/mol/cm).

Fig. S3 Molecular orbitals involved in crucial charge transitions of complexes 1-5 and $1^{+/-}-5^{+/-}$.

Fig. S4 Relationship between the β_{tot} values and the corresponding $\Delta \mu_{eg} f_{os} / \Delta E^3$ values for complexes 1-5.

CAM-B3LYP/6-311G+(d)/SDD level of theory. Purple color represents a positive value and blue color represents a negative value.

the

Fig.