Supporting Information

for

Revision of the oxygen reduction reaction on N -doped graphenes by grand-canonical DFT

 Kislenko V.A. ${ }^{1,2}$, Pavlov S.V. ${ }^{2}$, Nikitina V.A. ${ }^{1}$, Kislenko S.A. ${ }^{2, *}$${ }^{1}$ Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation
${ }^{2}$ Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation
*kislenko@ihed.ras.ru

Section S1. Gibbs free energy calculation.

To calculate the Gibbs free energy, we used the following form of the equation where zero-point energy (ZPE) contribution is decoupled from the vibrational one:
$G=E_{e}+Z P E+k_{B} T\left(-\ln (Z)+V\left(\frac{\partial \ln (Z)}{\partial V}\right)_{T}\right)$
where E_{e} is the electronic energy obtained from DFT calculations, $Z P E$ is the zero-point energy, and the last term is the contributions of the vibrational and translational/rotational (in the case of molecules in gas/liquid phase) motion of atoms to the Gibbs free energy derived from the partition function Z^{1}.

The total partition function of an individual molecule or graphene surface with chemisorbed intermediate Z can be written as
$Z=\left\{\begin{array}{cc}Z_{v i b} & \text {,for graphene }+ \text { adsorbed/chemisorbed molecule } \\ Z_{v i b} \cdot Z_{\text {trans }} \cdot Z_{\text {rot }}, \text { for an individual molecule in a gas/liquid phase }\end{array}\right.$
where $Z_{v i b^{\prime}} Z_{\text {trans }} Z_{\text {rot }}$ are the vibrational, translational, and rotational partition functions, respectively.

Vibrational partition function for graphene with adsorbed/chemisorbed molecule and for an individual molecule (excluding zero-point vibrations):
$Z_{v i b}=\prod_{i=1}^{N_{\text {modes }}} \frac{1}{1-\exp \left(-\frac{\hbar \omega_{i}}{k_{B} T}\right)}$
The eigenfrequencies were calculated using the finite difference method. The amplitude of perturbations for calculating the force matrix was equal to 0.02 Bohr. The vibrational spectrum was calculated at the 「 point only.

According to the ideal gas and rigid-body approximations ${ }^{2}$ translational and rotational partition function for an individual molecule:
$Z_{\text {trans }}=V\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}=\frac{k_{B} T}{P}\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}$
$Z_{\text {rot }}=\left\{\begin{array}{cl}\frac{2 I k_{B} T}{\sigma \hbar^{2}} & \text {, if linear molecule } \\ \frac{\left(2 k_{B} T\right)^{3 / 2}\left(\pi I_{1} I_{2} I_{3}\right)^{1 / 2}}{\sigma \hbar^{3}} & \text {, if non-linear molecule }\end{array}\right.$
where I_{1}, I_{2}, I_{3}, I are the (principal) moments of inertia, σ is a symmetry number ($\sigma=1$ for $\mathrm{OOH}^{\text {- }}$, $\sigma=2$ for $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{H}_{2} \mathrm{O}_{2}$).

To access the free volume V for the solvated molecules we apply the technique, suggested by De-Cai Fang ${ }^{3}$:
$V=\left(\sqrt[3]{V_{\text {cav }}}-\sqrt[3]{V_{\text {mol }}}\right)^{3}$
where the cavity volume $V_{\text {cav }}$ and molecule volume $V_{\text {mol }}$ can be estimated from the overlapping spheres ${ }^{4}$ with IDSCFR ${ }^{5}$ and Bader's ${ }^{6}$ radii, respectively. For the reference H_{2} molecule the $P=1 \mathrm{~atm}$ were taken to calculate the translational entropy and enthalpic correction.

Section S2. Additional Figures.

(b)

Fig. S1. The configurations of pyrrole defect reconstruction after ${ }^{*} \mathrm{OOH}$ dissociation.

Fig. S2. The configuration of a physically adsorbed ion $O O H_{\text {phys }}$ on the pristine graphene.

Fig. S3. The difference in reaction free energy calculated according to constant potential $\Delta^{\Delta G_{C P M}}$ and computational hydrogen electrode (CHE) ${ }^{\Delta G_{C H E}}$ methods for 4e-mechanism.

Fig. S4. The difference in reaction free energy calculated according to constant potential $\Delta G_{C P M}$ and computational hydrogen electrode (CHE) ${ }^{\Delta G_{C H E}}$ methods for 2e-mechanism.

References:

(1) Blundell, S. J.; Blundell, K. M. Concepts in Thermal Physics, Chapter 20; OUP Oxford, 2010.
(2) Landau, L. D.; Lifshitz, E. M. Statistical Physics: Volume 5; Elsevier, 2013.
(3) Liu, S.-C.; Zhu, X.-R.; Liu, D.-Y.; Fang, D.-C. DFT Calculations in Solution Systems: Solvation Energy, Dispersion Energy and Entropy. Phys. Chem. Chem. Phys. 2023, 25 (2), 913-931. https://doi.org/10.1039/D2CP04720A.
(4) Buša, J.; Džurina, J.; Hayryan, E.; Hayryan, S.; Hu, C.-K.; Plavka, J.; Pokorný, I.; Skřivánek, J.; Wu, M.-C. ARVO: A Fortran Package for Computing the Solvent Accessible Surface Area and the Excluded Volume of Overlapping Spheres via Analytic Equations. Comput Phys Commun 2005, 165 (1), 59-96. https://doi.org/10.1016/j.cpc.2004.08.002.
(5) Tao, J.-Y.; Mu, W.-H.; Chass, G. A.; Tang, T.-H.; Fang, D.-C. Balancing the Atomic Waistline: Isodensity-Based Scrf Radii for Main-Group Elements and Transition Metals. Int J Quantum Chem 2013, 113 (7), 975-984. https://doi.org/10.1002/qua.24065.
(6) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; International Ser. of Monogr. on Chem; Clarendon Press, 1994.

