Supporting information

Single Crystal Growth, Structure and thermal transport properties

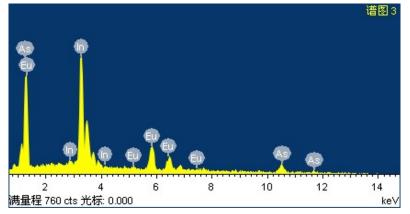
of the metallic antiferromagnet Zintl -phase β -EuIn₂As₂

D. S. Wu^{1, 2*}, S. H. Na^{1, 2}, Y. J. Li^{1, 2}, W. Wu^{1, 2}, X.B. Zhou^{1, 2}, P Zheng^{1, 2}, Z. Li^{1, 2,3}, J.

L. Luo^{1,2,3} *

¹Beijing National Laboratory for Condensed Matter Physics, Institute of

Physics,


Chinese Academy of Sciences, Beijing 100190, China;

²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing

100190, China;

³Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China *email address: <u>dswu@iphy.ac.cn</u>; <u>jlluo@iphy.ac.cn</u>

Figure S1: The chemical composition analysis of EuIn₂As₂ sample. The typical EDX spectrum of the EuIn₂As₂ crystal collected at an accelerating voltage of 15 k V and an accumulation time of 60 s.

To get a more convincing result, we chose several different micro-crystals which are cracked from a bulk crystal for the analysis of the chemical compositions. The result shows that there are only the Eu, In and As elements in the crystals. The percentage of Eu 16.98% (18.40%), In 26.12% (40.88%), As 15.56 (40.72%), which is very close to the stoichiometric ratio 1: 2: 2 in EuIn₂As₂