Supporting Information for:

Tailoring Flavin-based Photosensitizers for Efficient

Photooxidative Coupling of Benzylic Amines

Huimin Guo*, Yang Qiu, Siyu Liu, Xiangyu Zhang and Jianzhang Zhao

School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.

Contents

This file includes 1 Scheme, 87 Figures and 9 Tables within 57 pages.				
5 References	S56			
4 DFT/TD-DFT Results	S40			
3 NMR and HRMS spectra	S9			
3 Optimization of Reaction Conditions	S7			
2 Synthesis and Molecular Structure Characterization Data	S4			
1 General Information	S2			

KEYWORDS: Flavin; Electron Transfer; Intersystem Crossing; Photocatalysis; Photooxidation

^{*} Corresponding authors, email: <u>guohm@dlut.edu.cn</u> (H.G.)

1. General Information

All the chemicals used in synthesis were of analytical purity and were used as received. Solvents were dried and distilled before used for synthesis.

Analytical Measurements. All chemicals are analytically pure and used as received. NMR spectra were recorded on a Bruker 400 MHz spectrometer with CDCl₃, DMSO- d_6 as solvents and tetramethylsilane (TMS) as standard at 0.00 ppm. HRMS were measured with a G6224A (Aglient, U.S.).

Spectroscopic Measurements. Absorption spectrum were recorded on an UV2550 UV–Vis spectrophotometer (Shimadzu, Japan). Fluorescence spectra were measured on an FS5 spectrophotometer (Edinburgh Instruments, UK). Fluorescence lifetimes were measured with an OB920 luminescence lifetime spectrometer (Edinburgh Instruments, UK). The nanosecond transient absorption spectra were measured on LP920 laser flash photolysis spectrometer (Edinburgh Instruments Ltd., UK). Luminescence Quantum Yield were measured with an C13534-11 Quantaurus-QY Plus (Hamamatsu Photonics, Japan).

Preparation of Sample Solution for Spectroscopic Measurements. The compound was dissolved in a small amount of solvent in a 5 mL volumetric flask and then toluene was added to get 5 mL solution $(1.0 \times 10^{-3} \text{ M})$.

Singlet Oxygen Quantum Yield (Φ_A). 1,3-Diphenylisobenzofuran (DPBF) was used as ${}^{1}O_2$ scavenger and the ${}^{1}O_2$ production was monitored by following the absorbance of DPBF at 414 nm. A comparative method was used and was calculated according to the following equation (1) to determine the singlet oxygen quantum yield.

$$\Phi_{\Delta,\text{nuk}} = \Phi_{\Delta,\text{std}} \left(\frac{A_{\text{std}}}{A_{\text{nuk}}}\right) \left(\frac{I_{\text{unk}}}{I_{\text{std}}}\right) \left(\frac{\eta_{\text{unk}}}{\eta_{\text{std}}}\right)^2 \quad (1)$$

In the above equation, unk and std indicate the unknown sample and the standard, respectively. Φ , *A*, *m*, and η represent the singlet oxygen quantum yield, absorbance at excitation wavelength, slope of the absorbance of DPBF changing over time, and refractive index of the solvent used for measurement, respectively. Optically matched solutions were used (the solutions of the sample and the standard should give the same absorbance at the excitation wavelength). Anthracene was used as standard ($\Phi_{\Delta} = 0.60$ in CH₃CN).

Scheme S1. Synthesis of the compounds. Reaction conditions: (i) Octyl amine, THF, 66 °C, 16 h; (ii) Zn, NH₄Cl, CH₃OH/H₂O, 45 °C, 24 h; (iii) Alloxan, boric acid, acetic acid glacial, 70 °C, 3 h; (iv) Alloxan, boric acid, acetic acid glacial, 25 °C, 12 h.

Synthesis of the compound 2: Compound 1 (219 mg, 1 mmol) was dissolved in a roundbottomed flask of tetrahydrofuran THF (40 ml). *N*-octylamine (1.2 ml, 6 mmol) and triethylamine (0.3 ml) were added with a syringe under nitrogen atmosphere. The reaction mixture was stirred at 66 °C for 16 h. At the end of the reaction, the crude product was purified by vacuum concentration and silica gel chromatography. The eluent was dichloromethane methane and petroleum ether (v/v=1:3), and the orange-yellow product 2 was obtained with the weight of 312 mg and the yield of 95.2%. ¹H NMR (400 MHz, CDCl₃) : δ 0.85-0.95 (m, 3 H), 1.22-1.42(m, 11 H), 1.57-1.69 (m, 2 H), 3.28 (2 H, t, J = 7.07 Hz), 6.70 (t, J = 8.07 Hz, 1 H), 7.70 (dd, J = 7.75, 1.50 Hz, 1 H), 7.90 (dd, J=8.38, 1.50 Hz, 1 H). Synthesis of the compound MB-FL: Compound 2 (275.5 mg, 0.84 mmol) was dissolved in a mixture of methanol-water (v/v=2:1), and zinc powder (274 mg, 4.2 mmol) and NH₄Cl (456 mg, 8.2 mmol) were slowly added under the conditions of ice bath and nitrogen. The reaction was placed under 45 °C and nitrogen atmosphere for 24 h. The insoluble impurities were removed by vacuum filtration at the end of the reaction, and the pH of the solution was adjusted to neutral using NaHCO₃. Dichloromethane is then used for extraction and decompression concentration to obtain crude product 3.

The crude product 3 (100 mg), boric acid (21.3 mg) and alloxouracil (60.6 mg) were dissolved in an appropriate amount of glacial acetic acid and stirred for 3 h at 70 °C. At the end of the reaction, the insoluble impurities are removed by filtration to obtain the crude product. The glacial acetic acid in the crude product was removed using a rotary evaporator and dichloromethane was added. The crude product was purified by silica gel chromatography. The eluent was dichloromethane and methanol (v/v=40:1), and the orange product was 49 mg (yield 36%). ¹H NMR (400 MHz, DMSO-d₆) : δ 0.84-0.88 (m, 3 H), 1.27 (br. S., 10 H), 1.88 (br. S., 2 H), 4.86 (br. S., 2 H), 7.51 (t, J = 7.88 Hz, 1 H), 8.13 (d, J = 8.00 Hz, 1 H), 8.24 (d, J = 7.63 Hz, 1 H), 11.52 (s, 1 H). ¹³C NMR (101 MHz, DMSO-d₆) : δ 14.40 (s, 1 C), 22.53 (s, 1 C), 26.28 (s, 1 C), 28.64 (s, 1 C), 29.01 (s, 1 C), 29.12 (s, 1 C), 31.64 (s, 1 C), 48.06 (s, 1 C), 107.47 (s, 1, C), 127.12 (s, 1 C), 132.44 (s, 1 C), 133.32 (s, 1 C), 137.69 (s, 1 C), 139.40 (s, 1 C), 142.52 (s, 1 C), 152.58 (s, 1, C), 156.06 (s, 1 C), 159.89 (s, 1 C). ESI-TOF-HRMS ([C₁₈H₂₁BrN₄O₂+H]⁺) : Calculated value 405.0926, experimental value 405.0917.

Synthesis of the compound Ph-FL: The crude product 4 (50 mg), boric acid (21.3 mg) and alloxouracil (60.6 mg) were dissolved in an appropriate amount of glacial acetic acid and stirred overnight at room temperature and pressure. At the end of the reaction, the insoluble impurities

are removed by filtration to obtain the crude product. The glacial acetic acid in the crude product was removed by a rotary evaporator and dichloromethane was added. The crude product was purified by silica gel chromatography. The eluent was dichloromethane methane and methanol (v/v=40:1) to obtain a bright yellow product of 70.9 mg (90% yield). ¹H NMR (400 MHz, DMSO-d₆) : δ 6.76 (d, J = 8.25 Hz, 1 H), 7.44 (d, J = 7.25 Hz, 2 H), 7.61 7.77 (m, 6 H), 8.20 (dd, J = 8.13, 1.25 Hz, 1 H), 11.42 (s, 1 H). 13C NMR (101 MHz, DMSO-d₆) : δ 14.40 (s, 1 C), 22.53 (s, 1 C), 26.28 (s, 1 C), 28.64 (s, 1 C), 29.01 (s, 1 C), 29.12 (s, 1 C), 31.64 (s, 1 C), 48.06 (s, 1 C), 107.47 (s, 1 C), 127.12 (s, 1 C), 132.44 (s, 1 C), 133.32 (s, 1 C), 137.69 (s, 1 C), 139.40 (s, 1 C), 142.52 (s, 1 C), 152.58 (s, 1 C), 156.06 (s, 1 C), 159.89 (s, 1 C). ESI-TOF-HRMS ([C₁₆H₁₀N₄O₂-H]⁻) : Calculated value 289.0726, experimental value 289.0732.

3. Optimization of Reaction Conditions

Entry	Sensitizer	Sensitizer Concentration (mol %)	Duration (h)	Solvent	Yield (%)
1	MB-FL	0.5	9	DCM	42
2	MB-FL	0.5	9	MeCN	75
3	MB-FL	0.5	9	МеОН	40
4	MB-FL	0.5	9	MeCN:MeOH	67
5	MB-FL	0.5	9	MeCN:H ₂ O	86
6	MB-FL	0.5	3	MeCN:H ₂ O	63
7	MB-FL	0.5	5	MeCN:H ₂ O	76
8	MB-FL	0.5	7	MeCN:H ₂ O	80
9	MB-FL	0.5	11	MeCN:H ₂ O	90
10	None	None	9	MeCN:H ₂ O	0
11	MB-FL	0.5	9	MeCN:H ₂ O, No light	0
12	MB-FL	0.5	9	MeCN:H ₂ O, No O ₂	0

Table S3-1 Optimization of reaction conditions for MB-FL sensitized photooxidative coupling of benzylamines for synthesis of imines.^{a,b}

^{*a*} Benzylamine (0.2 mmol) as substrate, the light wavelength was 451 nm, the light intensity was 1400 W/m². Further experimental details and ¹H-NMR of product mixtures were included in the Supporting Information. ^{*b*} The composition of mixed MeCN /MeOH, DCM/MeOH and MeCN /H₂O solvents are v:v = 9:1, otherwise specified.

Entry	Sensitizer	Sensitizer Concentration (mol %)	Duration (h)	Solvent	Yield (%)
1	Ph -FL	0.5	9	MeOH	8
2	Ph -FL	0.5	9	MeCN	53
3	Ph -FL	0.5	9	DCM	26
4	Ph -FL	0.5	9	MeCN:MeOH	28
5	Ph -FL	0.5	9	MeCN:H ₂ O	14
6	Ph -FL	0.5	3	MeCN	35
7	Ph -FL	0.5	5	MeCN	40
8	Ph -FL	0.5	7	MeCN	44
9	Ph -FL	0.5	11	MeCN	58
10	None	None	9	MeCN	0
11	Ph -FL	0.5	9	MeCN, No light	0
12	Ph -FL	0.5	9	MeCN, No O ₂	0

Table S3-2 Optimization of reaction conditions for Ph-FL sensitized photooxidative coupling of benzyl amines for synthesis of imines.^{a,b}

^{*a*} Benzylamine (0.2 mmol) as substrate, the light wavelength was 451 nm, the light intensity was 1400 W/m². Further experimental details and ¹H-NMR of product mixtures were included in the Supporting Information. ^{*b*} The composition of mixed MeCN /MeOH and MeCN /H₂O solvents are v:v = 9:1, unless specified explicitly.

4. NMR and HRMS spectra

Figure S4-1. MS spectrum of 2.

Figure S4-2. HRMS spectrum of MB-FL.

Figure S4-3. HRMS spectrum of Ph-FL.

Figure S4-4. ¹H NMR spectrum of MB-FL (400 MHz, DMSO-*d*₆), 25 °C.

Figure S4-5. ¹H NMR spectrum of Ph-FL (400 MHz, DMSO-*d*₆), 25 °C.

Figure S4-6. ¹H NMR spectrum of 2 (400 MHz, CDCl₃), 25 °C.

Figure S4-7. ¹³C NMR spectrum of **2** (101 MHz, DMSO-*d*₆), 25 °C.

Figure S4-8. ¹³C NMR spectrum of **2** (101 MHz, DMSO- d_6), 25 °C.

Figure S4-9. GC-MS spectra of benzoylamine catalyzed by FL photocatalysis.

Figure S4-10.¹H NMR(CDCl₃,400 MHz),Photosensitizer:FL(0.2 mol%),Reaction solvent: CH₃CN,Reaction time:9 h,Yield:43 %.

Figure S4-11.¹H NMR(CDCl3,400MHz), Photosensitizer:FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time:9 h, Yield: 67 %.

Figure S4-12.¹H NMR(CDCl₃, 400 MHz), Photosensitizer: FL(1 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 70 %.

Figure S4-13.¹H NMR(CDCl₃,400 MHz),Photosensitizer:FL(0.5 mol%) ,Reaction solvent: CH₃OH,Reaction time:9 h,Yield:30 %.

Figure S4-14.¹H NMR(CDCl₃,400 MHz),Photosensitizer:FL(0.5 mol%),Reaction solvent: CH₂Cl₂,Reaction time:9 h,Yield:24 %.

Figure S4-15.¹H NMR(CDCl₃, 400 MHz), Photosensitizer: FL(0.5 mol%), Reaction solvent: CH₃CN: CH₃OH=9:1 (v:v), Reaction time:9 h, Yield:48 %.

Figure S4-16.¹H NMR(CDCl₃,400 MHz),Photosensitizer:FL(0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time: 9 h,Yield: 63 %.

Figure S4-17.¹H NMR(CDCl₃, 400 MHz), Photosensitizer: FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 3 h, Yield: 48 %.

Figure S4-18.¹H NMR(CDCl₃,400 MHz), Photosensitizer:FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time:5 h, Yield:55 %.

Figure S4-19.¹H NMR(CDCl₃, 400 MHz), Photosensitizer: FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 7 h, Yield: 61 %.

Figure S4-20.¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time:11 h,Yield:70 %.

Figure S4-21.¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: CH₂Cl₂,Reaction time: 9 h, Yield: 42 %.

Figure S4-22.¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: CH₃CN,Reaction time:9 h,Yield:75 %.

Figure S4-23.¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: CH₃OH, Reaction time: 9 h,Yield: 40 %.

Figure S4-24.¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: CH₃CN: CH₃OH = 9:1(v:v), Reaction time: 9 h, Yield: 67 %.

Figure S4-25.¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time: 9 h, Yield: 86 %.

Figure S4-26.¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time: 3 h, Yield: 63 %.

Figure S4-27.¹H NMR(CDCl₃, 400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: CH₃CN: $H_2O = 9:1(v:v)$, Reaction time: 5 h, Yield: 76 %.

Figure S4-28.¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: CH_3CN : $H_2O = 9:1(v:v)$, Reaction time: 7 h, Yield: 80 %.

Figure S4-29.¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time:11 h, Yield: 90 %.

Figure S4-30.¹H NMR(CDCl₃, 400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₃OH, Reaction time: 7 h, Yield: 84 %.

Figure S4-31.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time:7 h, Yield:94 %.

Figure S4-32.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₂Cl₂, Reaction time: 7 h, Yield: 46 %.

Figure S4-33.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₃CN: CH₃OH=9:1(v:v), Reaction time: 7 h,Yield: 92 %.

Figure S4-34. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₃CN:H₂O=9:1(v:v), Reaction time: 7 h, Yield: 100 %.

Figure S4-35.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₃CN:H₂O=9:1(v:v), Reaction time:1 h, Yield: 40 %.

Figure S4-36.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₃CN:H₂O=9:1(v:v), Reaction time: 3 h, Yield: 72 %.

Figure S4-37.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O=9:1(v:v)$, Reaction time:5 h, Yield:91 %.

Figure S4-38. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₃CN:H₂O=9:1(v:v), Reaction time: 9 h, Yield: 100 %.

Figure S4-39. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃OH, Reaction time: 9 h, Yield: 8 %.

Figure S4-40.¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 53 %.

Figure S4-41.¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₂Cl₂, Reaction time: 9 h, Yield:26 %.

Figure S4-42.¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: $CH_3CN:CH_3OH = 9:1$ (v:v), Reaction time: 9 h, Yield: 28 %.

Figure S4-43.¹H NMR(CDCl₃,400 MHz),Photosensitizer:Ph-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time: 9 h, Yield: 14 %.

Figure S4-44.¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 3 h, Yield: 35 %.

Figure S4-45.¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time:5 h, Yield:40 %.

Figure S4-46.¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 7 h, Yield: 44 %.

Figure S4-47.¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 11 h, Yield: 58 %.

Figure S4-48. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 50 %.

Figure S4-49.¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 50 %.

Figure S4-50.¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 62 %.

Figure S4-51.¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 74 %.

Figure S4-52.¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL(0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 43 %.

Figure S4-53.¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: CH₃CN:H₂O=9:1(v:v), Reaction time: 9 h, Yield: 66 %.

Figure S4-54. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time:9 h, Yield: 79 %.

Figure S4-55. ¹H NMR(CDCl₃, 400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time:9 h, Yield:81 %.

Figure S4-56. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time: 9 h, Yield: 89 %.

Figure S4-57. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: MB-FL (0.5 mol%), Reaction solvent: CH₃CN:H₂O=9:1(v:v), Reaction time: 9 h, Yield:73 %.

Figure S4-58.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₃CN:H₂O=9:1(v:v), Reaction time: 5 h, Yield: 74 %.

Figure S4-59. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CH₃CN:H₂O=9:1(v:v), Reaction time: 5 h, Yield: 87 %.

Figure S4-60. ¹H NMR (CDCl₃,400 MHz), Photosensitizer:DB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time: 5 h, Yield: 85 %.

Figure S4-61.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1$ (v:v), Reaction time: 5 h, Yield: 87 %.

Figure S4-62. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: $CH_3CN:H_2O = 9:1(v:v)$, Reaction time:5 h, Yield: 81 %.

Figure S4-63. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 41 %.

Figure S4-64. ¹H NMR (CDCl₃,400 MHz), Photosensitizer:Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield:48 %.

Figure S4-65. ¹H NMR (CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 60 %.

Figure S4-66. ¹H NMR (CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 60 %.

Figure S4-67. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: Ph-FL (0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 43 %.

Figure S4-68. ¹H NMR (CDCl₃, 400 MHz), Photosensitizer: FL (0.5 mol%), Trapping agent: DABCO(0.5 mol%), Reaction solvent: CH₃CN, Reaction time:9 h, Yield: 48 %.

Figure S4-69. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL (0.5 mol%), Trapping agent: BQ(0.5 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 52 %.

Figure S4-70. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL (0.5 mol%), Trapping agent: TEMPO(15 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 41 %.

Figure S4-71. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL (0.5 mol%), Trapping agent: BHT(15 mol%), Reaction solvent: CH₃CN, Reaction time:9 h, Yield: 65 %.

Figure S4-72. ¹H NMR(CDCl₃,400 MHz), Photosensitizer: FL (0.5 mol%), Trapping agent: DDUN(15 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 66 %.

Figure S4-73. ¹H NMR (CDCl₃, 400 MHz), Photosensitizer: FL (0.5 mol%), Trapping agent: AgNO₃(0.5 mol%), Reaction solvent: CH₃CN, Reaction time:9 h, Yield: 61 %.

Figure S4-74. ¹H NMR (CDCl₃,400 MHz), Photosensitizer: FL (0.5 mol%), Trapping agent: AgNO₃(15 mol%), Reaction solvent: CH₃CN, Reaction time:9 h, Yield: 30 %.

Figure S4-75. ¹H NMR (CDCl₃,400 MHz), Photosensitizer: FL (0.5 mol%), Trapping agent: AgNO₃(25 mol%), Reaction solvent: CH₃CN, Reaction time: 9 h, Yield: 24 %.

Figure S4-76.¹H NMR(CDCl₃,400 MHz),Photosensitizer:Ph-FL (0.5 mol%),Trapping agent:AgNO₃(25 mol%),Reaction solvent: CH₃CN,Reaction time:9 h,Yield:10 %.

Figure S4-77.¹H NMR(CDCl₃,400 MHz),Photosensitizer:MB-FL (0.5 mol%),Trapping agent:AgNO₃(25 mol%), Reaction solvent: CH₃CN,Reaction time:9 h,Yield:42 %.

Figure S4-78.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Trapping agent:AgNO₃(25 mol%), Reaction solvent: CH₃CN: H₂O=9:1(v:v), Reaction time:5 h, Yield:32 %.

Figure S4-79.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CD₃CN: H₂O=9:1(v:v),Reaction time:3 h,Yield:94.4 %.

Figure S4-80.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Reaction solvent: CD₃CN: H₂O=9:1(v:v),Reaction time:5 h,Yield:97.9 %.

Figure S4-81.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Trapping agent:BQ, Reaction solvent: CH₃CN: H₂O=9:1(v:v), Reaction time:5 h, Yield:77.7 %.

Figure S4-82.¹H NMR(CDCl₃,400 MHz), Photosensitizer: DB-FL (0.5 mol%), Trapping agent:DABCO, Reaction solvent: CH₃CN: H₂O=9:1(v:v), Reaction time:5 h, Yield:63.4 %.

5. DFT/TD-DFT Results

Theoretical Methods

The electronic structure and photophysical properties of these sensitizers were investigated with Density Functional Theory (DFT) and Time-dependent (TD)-DFT based calculations. The alkyl groups in chromophores were simplified to $-CH_3$. S₀ structures of sensitizers were fully optimized with 6-311G(d) basis sets¹⁻³ and B3LYP functional.^{4, 5} The impact of potential interactions with solvents to electronic structure of sensitizers were treated with Polarizable Continuum Model (PCM).⁶⁻⁸ Structures of sensitizers at S₁ and T_n were obtained by relaxation with TD-DFT calculations based on the S₀ structures. These calculations were performed with Gaussian 16.⁹ The T_n to S₀ transition dipole moments were evaluated with quadratic response function¹⁰⁻¹² and the spin–orbit coupling constants were calculated with Dalton with effective single electron approximation in linear response theory.¹³⁻¹⁵ With the electronic structure of sensitizers at S₀ and excited states, photophysical properties of these FLPSs were investigated within the Thermal Vibration Correlation Function (TVCF) formalism as implemented in MOMAP.¹⁶⁻²⁰

FL	Energy	f	Composition	CI	Character
$S_0 \rightarrow S_1$	3.0227 eV/410.18 nm	0.2152	$59 \rightarrow 60$	0.69596	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.3227 eV/373.14 nm	0.0008	$56 \rightarrow 60$	0.50597	n→π*
			$57 \rightarrow 60$	0.48175	$n \rightarrow \pi^*$
$S_0 \rightarrow S_3$	3.4569 eV/358.66 nm	0.0001	$54 \rightarrow 60$	0.11469	$n \rightarrow \pi^*$
			$56 \rightarrow 60$	0.48106	n→π*
			$57 \rightarrow 60$	0.49542	$n \rightarrow \pi^*$
$S_0 \rightarrow S_4$	3.7649 eV/329.32 nm	0.1846	$58 \rightarrow 60$	0.68108	$\pi \rightarrow \pi^*.n \rightarrow \pi^*$
			$50 \rightarrow 61$	0.14557	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_5$	4 1391 eV/299 54 nm	0.0000	$54 \rightarrow 60$	0 68091	$n \rightarrow \pi^*$
50 53		0.0000	$57 \rightarrow 60$	0.11805	$n \rightarrow \pi^*$
$S_0 \rightarrow S_c$	4 2073 eV/294 69 nm	0.0121	$57 \rightarrow 60$	0.68296	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
50 , 56	1.2075 CV725 1.05 IIII	0.0121	$50 \rightarrow 61$	0.13590	$\pi \rightarrow \pi^*.n \rightarrow \pi^*$
So-S	4.6715 eV/265.41 nm	0.0004	$57 \rightarrow 60$	0.68362	n→π*
50 / 5/	+.0715 C 77205.41 IIII	0.0004	$52 \div 60$	0.13155	$n \rightarrow \pi^*$
So-So	4 8343 eV/256 47 nm	0.0407	$50 \rightarrow 60$	0.64940	<u>π</u> π* nπ*
50 , 58	T.8575 CV/250.77 IIII	0.0407	$53 \rightarrow 60$	0.23530	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
S. S.	4 8870 aV/253 70 pm	0 73 27	$58 \rightarrow 61$	0.15071	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
S ₀ →S ₉	4.8870 € 7/255.70 1111	0.7327	$53 \rightarrow 60$	0.13071	$\pi \rightarrow \pi^*, \Pi \rightarrow \pi^*$
			$58 \rightarrow 60$	0.65739	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
G G	5 21 49 34/227 75	0.0002	$59 \rightarrow 61$	0.122(0	*
$S_0 \rightarrow S_{10}$	5.2148 eV/237.75 nm	0.0003	$52 \rightarrow 60$	0.12260	$n \rightarrow \pi^*$
			$56 \rightarrow 61$	0.39739	$n \rightarrow \pi^*$
~ -			$57 \rightarrow 61$	0.33002	11 <i>/ n</i>
$S_0 \rightarrow T_1$	2.1524 eV/576.04 nm	0.0000	$58 \rightarrow 60$	0.10512	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$59 \rightarrow 60$	0.69490	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_2$	2.7564 eV/449.80 nm	0.0000	$58 \rightarrow 60$	0.65690	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$58 \rightarrow 62$	0.14210	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$59 \rightarrow 60$	0.10191	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$59 \rightarrow 61$	0.13920	$n \rightarrow n^+, n \rightarrow n^+$
$S_0 \rightarrow T_3$	2.8757 eV/431.15 nm	0.0000	$52 \rightarrow 60$	0.20097	$n \rightarrow \pi^*$
			$56 \rightarrow 60$	0.59844	n→π*
			$57 \rightarrow 60$	0.29162	n→π*
$S_0 \rightarrow T_4$	3.2381 eV/382.90 nm	0.0000	$54 \rightarrow 60$	0.17148	n→π*
			$56 \rightarrow 60$	0.27731	$n \rightarrow \pi^*$
			$57 \rightarrow 60$	0.60567	$n \rightarrow \pi^*$
$S_0 \rightarrow T_5$	3.5826 eV/346.07 nm	0.0000	$55 \rightarrow 60$	0.61066	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
-			$55 \rightarrow 63$	0.12514	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$58 \rightarrow 60$	0.11312	$\pi {\rightarrow} \pi^*, n {\rightarrow} \pi^*$
			$59 \rightarrow 61$	0.27992	$\pi {\rightarrow} \pi^*, n {\rightarrow} \pi^*$
			57 01		

Table S5-1. Electronic transitions involved in the excitation of FL.

MB-FL	Energy	f	Composition	CI	Character
$S_0 \rightarrow S_1$	2.9397 eV/421.76 nm	0.1266	$75 \rightarrow 77$	0.13109	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$76 \rightarrow 77$	0.68714	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.3054 eV/375.10 nm	0.0036	$73 \rightarrow 77$	0.49011	n→π*
			$73 \rightarrow 77$	0.49515	$n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3 4376 eV/360 67 nm	0.0678	$73 \rightarrow 77$	0 40367	n→π*
50 , 53	5.1570 e 77500.07 him	0.0070	$73 \rightarrow 77$	0.38758	$n \rightarrow \pi^*$
			74 ~ 77	0.40088	$\pi \rightarrow \pi^*.n \rightarrow \pi^*$
C . C	2 4741 - 11/25(99	0 1751	<i>73 → 77</i>	0.29775	
$\mathbf{S}_0 \rightarrow \mathbf{S}_4$	3.4/41 eV/330.88 mm	0.1/31	$/3 \rightarrow //$	0.28773	$n \rightarrow \pi^*$
			$7/4 \rightarrow 7/7$	0.26474	$\Pi \rightarrow \pi^*$ $\pi \rightarrow \pi^*$
			$75 \rightarrow 77$	0.10919	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
			$76 \rightarrow 77$	0.11555	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
			$76 \rightarrow 78$	0.11555	<i>n /n</i> ,11 <i>/n</i>
$S_0 \rightarrow S_5$	4.1196 eV/300.97 nm	0.0004	$70 \rightarrow 77$	0.57012	n→π*
			$71 \rightarrow 77$	0.37398	n→π*
			74 → 77	0.10777	n→π*
$S_0 \rightarrow S_6$	4.1836 eV/296.36 nm	0.0128	$72 \rightarrow 77$	0.67538	n→π*
			$76 \rightarrow 78$	0.15217	n→π*
$S_0 \rightarrow S_7$	4.3292 eV/286.39 nm	0.0014	$67 \rightarrow 77$	0.11551	n→π*
с ,			$70 \rightarrow 77$	0.36602	n→π*
			$70 \rightarrow 77$	0.58022	n→π*
$S_{a} \rightarrow S_{a}$	4.6399 eV/267.22 nm	0 3621	$68 \rightarrow 77$	0 15420	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
50 , 58	4.0399 CV7207.22 IIII	0.5021	$72 \rightarrow 77$	0.13420	$n \rightarrow \pi^*$
			72 → 77 75 - 79	0.11895	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
			$/5 \rightarrow /8$	0.11391	$\pi \rightarrow \pi^*.n \rightarrow \pi^*$
			$75 \rightarrow 79$	0.59254	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$76 \rightarrow 78$	0.17905	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$76 \rightarrow 79$	0.13154	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$76 \rightarrow 80$		
$S_0 \rightarrow S_9$	4.6985 eV/263.88 nm	0.0289	$67 \rightarrow 77$	0.45904	n→π*
			$68 \rightarrow 77$	0.26507	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$69 \rightarrow 77$	0.30763	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$73 \rightarrow 78$	0.12149	$n \rightarrow \pi^*$
			$75 \rightarrow 78$	0.22353	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$76 \rightarrow 78$	0.14921	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$76 \rightarrow 79$	0.10128	$n \rightarrow n^{*}, n \rightarrow n^{*}$
$S_0 \rightarrow S_{10}$	4.7571 eV/260.63 nm	0.0106	$67 \rightarrow 77$	0.34442	n→π*
20 210		010100	$68 \rightarrow 77$	0.17458	$\pi \rightarrow \pi^*.n \rightarrow \pi^*$
			$60 \rightarrow 77$	0.39535	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$0 \rightarrow 77$	0.38672	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$73 \rightarrow 78$	0.12618	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
C T	0 1077 - WERD 00	0.0000	$76 \rightarrow 79$	0 202 47	* *
$S_0 \rightarrow I_1$	2.15// ev/5/9.99 nm	0.0000	$15 \rightarrow 11$	0.20247	$\pi \rightarrow \pi^{*}, n \rightarrow \pi^{*}$
a –	0 1 10 1 11 100 00	0.0000	$7/6 \rightarrow 77$	0.0/193	π→π [•] ,n→π [•]
$S_0 \rightarrow T_2$	2.5405 eV/488.03 nm	0.0000	$68 \rightarrow 77$	0.13567	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$75 \rightarrow 77$	0.63261	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$

Table S5-2. Electronic transitions involved in the excitation of MB-FL.

			$75 \rightarrow 79$	0.11344	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$76 \rightarrow 77$	0.19607	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$76 \rightarrow 78$	0.10225	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_3$	2.8707 eV/431.89 nm	0.0000	$67 \rightarrow 77$	0.17473	n→π*
			$73 \rightarrow 77$	0.57454	n→π*
			74 → 77	0.33942	$n \rightarrow \pi^*$
$S_0 \rightarrow T_4$	3.2265 eV/384.27 nm	0.0000	$70 \rightarrow 77$	0.15251	n→π*
			$73 \rightarrow 77$	0.32735	n→π*
			74 → 77	0.58236	$n \rightarrow \pi^*$
$S_0 \rightarrow T_5$	3.5256 eV/351.66 nm	0.0000	$72 \rightarrow 77$	0.46177	n→π*
			$75 \rightarrow 77$	0.13015	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$75 \rightarrow 79$	0.10437	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$76 \rightarrow 78$	0.46178	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$

DB-FL	Energy	f	Composition	CI	Character
$S_0 \rightarrow S_1$	2.9061 eV/426.64 nm	0.2562	$93 \rightarrow 94$	0.69605	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.2895 eV/376.91 nm	0.0007	$90 \rightarrow 94$	0.45975	$n \rightarrow \pi^*$
			91 → 94	0.52471	n→π*
$S_0 \rightarrow S_3$	3.4127 eV/363.31 nm	0.0001	$86 \rightarrow 94$	0.10528	$n \rightarrow \pi^*$
			$90 \rightarrow 94$	0.52556	n→π*
			$91 \rightarrow 94$	0.44948	n→π*
$S_0 \rightarrow S_4$	3.6065 eV/343.78 nm	0.2527	92 → 94	0.68436	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$93 \rightarrow 95$	0.12714	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_5$	4.0742 eV/304.32 nm	0.0000	$86 \rightarrow 94$	0.62883	$n \rightarrow \pi^*$
			$88 \rightarrow 94$	0.27001	n→π*
			$91 \rightarrow 94$	0.11108	n→π*
$S_0 \rightarrow S_6$	4.0924 eV/302.96 nm	0.0057	87 → 94	0.52915	$n \rightarrow \pi^*$
			$89 \rightarrow 94$	0.45640	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_7$	4.1394 eV/299.52 nm	0.0000	$86 \rightarrow 94$	0.26423	$n \rightarrow \pi^*$
			$88 \rightarrow 94$	0.65064	n→π*
$S_0 \rightarrow S_8$	4.1701 eV/297.32 nm	0.0153	$87 \rightarrow 94$	0.43540	$n \rightarrow \pi^*$
			$89 \rightarrow 94$	0.51342	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$93 \rightarrow 95$	0.16501	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_9$	4.5884 eV/270.21 nm	0.0000	$89 \rightarrow 96$	0.13368	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			$93 \rightarrow 96$	0.69182	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_{10}$	4.6606 eV/266.03 nm	0.0004	83 → 94	0.65622	$n \rightarrow \pi^*$
			$85 \rightarrow 94$	0.18944	n→π*
			$90 \rightarrow 95$	0.13568	n→π*
$S_0 \rightarrow T_1$	2.0857 eV/594.45 nm	0.0000	$93 \rightarrow 94$	0.69106	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_2$	2.6797 eV/462.67 nm	0.0000	84 → 94	0.14042	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$92 \rightarrow 94$	0.64343	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$92 \rightarrow 97$	0.13561	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$93 \rightarrow 95$	0.13148	$n \rightarrow n^{+}, n \rightarrow n^{+}$
$S_0 \rightarrow T_3$	2.8770 eV/430.95 nm	0.0000	$83 \rightarrow 94$	0.19213	$n \rightarrow \pi^*$
			$90 \rightarrow 94$	0.59319	$n \rightarrow \pi^*$
			91 → 94	0.30431	n→π*
$S_0 \rightarrow T_4$	3.1872 eV/389.00 nm	0.0000	86 → 94	0.16812	n→π*
			$90 \rightarrow 94$	0.29058	n→π*
			91 → 94	0.59944	n→π*
$S_0 \rightarrow T_5$	3.4906 eV/355.20 nm	0.0000	87 → 94	0.40901	n→π*
			89 → 94	0.32527	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			92 → 94	0.11877	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			93 → 95	0.42272	$\pi \rightarrow \pi^{+}, n \rightarrow \pi^{+}$

Table S5-3. Electronic transitions involved in the excitation of DB-FL.

Ph-FL	Energy	f	Composition	CI	Character
$S_0 \rightarrow S_1$	3.0223 eV/410.23 nm	0.2141	$75 \rightarrow 76$	0.69440	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.2805 eV/377.94 nm	0.0006	$70 \rightarrow 76$	0.38996	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$72 \rightarrow 76$	0.45592	$n \rightarrow \pi^*$
			$74 \rightarrow 76$	0.36410	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_3$	3.3792 eV/366.91 nm	0.0000	$68 \rightarrow 76$	0.11760	n→π*
			$72 \rightarrow 76$	0.47665	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			74 → 76	0.49177	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_4$	3.6278 eV/341.76 nm	0.0818	$73 \rightarrow 76$	0.69305	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
$S_0 \rightarrow S_5$	3.7189 eV/333.39 nm	0.0003	$70 \rightarrow 76$	0.56842	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			$72 \rightarrow 76$	0.22251	n→π*
			74 → 76	0.34254	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_6$	3.7974 eV/326.50 nm	0.1195	$71 \rightarrow 76$	0.68816	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			$75 \rightarrow 77$	0.11349	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_7$	4.1396 eV/299.51 nm	0.0000	$68 \rightarrow 76$	0.67877	n→π*
$S_0 \rightarrow S_8$	4.1978 eV/295.35 nm	0.0131	$69 \rightarrow 76$	0.68349	n→π*
			$75 \rightarrow 77$	0.13401	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_9$	4.6988 eV/263.87 nm	0.0002	$66 \rightarrow 76$	0.67118	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			$70 \rightarrow 77$	0.10706	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			74 → 77	0.10839	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_{10}$	4.8520 eV/255.53 nm	0.2252	$67 \rightarrow 76$	0.56461	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			$71 \rightarrow 77$	0.13175	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$73 \rightarrow 77$	0.17685	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$75 \rightarrow 77$	0.33909	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_1$	2.1429 eV/578.58 nm	0.0000	$75 \rightarrow 76$	0.69244	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
$S_0 \rightarrow T_2$	2.7509 eV/450.71 nm	0.0000	$71 \rightarrow 76$	0.43977	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			$73 \rightarrow 76$	0.48775	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$75 \rightarrow 76$	0.11713	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$75 \rightarrow 77$	0.12672	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_3$	2.8421 eV/436.25 nm	0.0000	$66 \rightarrow 76$	0.18655	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			$70 \rightarrow 76$	0.47385	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$72 \rightarrow 76$	0.39268	$n \rightarrow \pi^*$
			$74 \rightarrow 76$	0.26266	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_4$	3.1972 eV/387.79 nm	0.0000	$68 \rightarrow 76$	0.17012	n→π*
			$70 \rightarrow 76$	0.15968	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$72 \rightarrow 76$	0.49924	n→π*
			$74 \rightarrow 76$	0.41784	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_5$	3.5620 eV/348.08 nm	0.0000	$69 \rightarrow 76$	0.59168	n→π*
			$69 \rightarrow 81$	0.12104	n→π*
			$73 \rightarrow 76$	0.16351	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$75 \rightarrow 77$	0.29034	$\pi \rightarrow \pi^{*}, n \rightarrow \pi^{*}$

Table S5-4. Electronic transitions involved in the excitation of Ph-FL.

DB-FL	Energy	f	Composition	CI	Character
$S_0 \rightarrow S_1$	3.3450 eV/370.65 nm	0.4102	93 → 94	0.69392	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.7020 eV/334.92 nm	0.0014	$83 \rightarrow 94$	0.17031	n→π*
			$90 \rightarrow 94$	0.54959	n→π*
			$91 \rightarrow 94$	0.37803	$n \rightarrow \pi^*$
$S_0 \rightarrow S_3$	4.1409 eV/299.42 nm	0.0000	$86 \rightarrow 94$	0.27013	n→π*
0 0			$86 \rightarrow 98$	0.10753	n→π*
			$90 \rightarrow 91$	0.34727	n→π*
			$90 \rightarrow 94$	0.49646	$n \rightarrow \pi^*$
			$91 \rightarrow 94$	0.12821	n→π*
S. S.	4.2274 oV/202.50 pm	0 2240	$91 \rightarrow 90$	0.67046	~ \~* p \~*
$s_0 \rightarrow s_4$	4.2374 6 7/292.39 1111	0.2240	$92 \rightarrow 94$	0.07040	$n \rightarrow n^{*}, n \rightarrow n^{*}$ $\pi \rightarrow \pi^{*}, n \rightarrow \pi^{*}$
a a	4.0750 11/054.00	0.1265	$93 \rightarrow 95$	0.13901	<i>n→n</i> , <i>m→n</i>
$S_0 \rightarrow S_5$	4.8/50 eV/254.32 nm	0.1365	$82 \rightarrow 94$	0.12842	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			87 → 94	0.4/3/0	$n \rightarrow \pi^*$
			$89 \rightarrow 94$	0.26411	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$92 \rightarrow 95$	0.13933	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$93 \rightarrow 95$	0.34280	$\pi \rightarrow \pi^*, \Pi \rightarrow \pi^*$ $\pi \rightarrow \pi^* n \rightarrow \pi^*$
			$93 \rightarrow 97$	0.14371	n /n ,11 /n
$S_0 \rightarrow S_6$	4.9859 eV/248.67 nm	0.0000	$83 \rightarrow 94$	0.22099	n→π*
			$86 \rightarrow 94$	0.51583	$n \rightarrow \pi^*$
			$86 \rightarrow 100$	0.10783	$n \rightarrow \pi^*$
			$90 \rightarrow 94$	0.16092	n→π*
			$90 \rightarrow 95$	0.13439	n→π*
			$90 \rightarrow 93$	0.20102	$n \rightarrow \pi^*$
			91×94	0.16261	n→π*
			$91 \rightarrow 95$	0.10466	n→π*
0 0	5 10 40 14/2 42 07	0 4640	$91 \rightarrow 100$	0 41054	* *
$S_0 \rightarrow S_7$	5.1049 eV/242.87 nm	0.4649	$89 \rightarrow 94$	0.41954	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$92 \rightarrow 94$	0.18163	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$92 \rightarrow 95$	0.11627	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$93 \rightarrow 95$	0.40074	$\pi \rightarrow \pi^*, \Pi \rightarrow \pi^*$ $\pi \rightarrow \pi^* n \rightarrow \pi^*$
			$93 \rightarrow 97$	0.17007	n /n ,11 /n
$S_0 \rightarrow S_8$	5.1560 eV/240.47 nm	0.0001	$83 \rightarrow 94$	0.54052	n→π*
			86 → 94	0.20740	n→π*
			$90 \rightarrow 95$	0.24472	n→π*
			$90 \rightarrow 98$	0.11480	$n \rightarrow \pi^*$
			$91 \rightarrow 94$	0.10575	n→π*
			$91 \rightarrow 95$	0.14850	n→π*
$S_0 \rightarrow S_0$	5 1879 eV/238 99 nm	0 5425	$91 \rightarrow 94$	0 50182	n→π*
50,09	5.1077 C77250.79 mm	0.0120	$80 \rightarrow 0/$	0.29694	$\pi \rightarrow \pi^*.n \rightarrow \pi^*$
			07 - 505	0.14696	$\pi \rightarrow \pi^*.n \rightarrow \pi^*$
			$92 \rightarrow 95$	0.32555	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$93 \rightarrow 95$	0.10585	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			93 → 9 7		,

Table S5-5. Electronic transitions involved in the excitation of DB-FL calculated at CAM-B3LYP/6-311G(d) level of theory.

$S_0 \rightarrow S_{10}$	5.2890 eV/234.42 nm	0.0001	$89 \rightarrow 94$ $93 \rightarrow 96$	0.31195 0.61391	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$ $\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_1$	2.2529 eV/550.32 nm	0.0000	$89 \rightarrow 94$ $92 \rightarrow 94$ $93 \rightarrow 94$	0.12909 0.19278 0.64457	$ \begin{array}{l} \pi \rightarrow \pi^*, n \rightarrow \pi^* \\ \pi \rightarrow \pi^*, n \rightarrow \pi^* \\ \pi \rightarrow \pi^*, n \rightarrow \pi^* \end{array} $
$S_0 \rightarrow T_2$	2.8423 eV/436.21 nm	0.0000	$84 \rightarrow 94$ $92 \rightarrow 94$ $92 \rightarrow 97$ $93 \rightarrow 94$ $93 \rightarrow 95$	0.16780 0.53188 0.20812 0.20711 0.27116	$\begin{array}{l} \pi \rightarrow \pi^*, n \rightarrow \pi^* \\ \pi \rightarrow \pi^*, n \rightarrow \pi^* \end{array}$
$S_0 \rightarrow T_3$	3.1216 eV/397.18 nm	0.0000	$83 \rightarrow 94$ $90 \rightarrow 94$ $91 \rightarrow 94$	0.26676 0.52929 0.32157	$\begin{array}{c} n \longrightarrow \pi^* \\ n \longrightarrow \pi^* \\ n \longrightarrow \pi^* \end{array}$
$S_0 \rightarrow T_4$	3.7751 eV/328.42 nm	0.0000	$89 \rightarrow 94$ $92 \rightarrow 94$ $93 \rightarrow 94$ $93 \rightarrow 95$	0.22791 0.26179 0.10752 0.55719	$\begin{array}{l} \pi \rightarrow \pi^{*}, n \rightarrow \pi^{*} \\ \pi \rightarrow \pi^{*}, n \rightarrow \pi^{*} \\ \pi \rightarrow \pi^{*}, n \rightarrow \pi^{*} \\ \pi \rightarrow \pi^{*}, n \rightarrow \pi^{*} \end{array}$
$S_0 \rightarrow T_5$	3.8117 eV/325.27 nm	0.0000	$86 \rightarrow 94$ $86 \rightarrow 98$ $90 \rightarrow 94$ $91 \rightarrow 94$ $91 \rightarrow 98$	$\begin{array}{c} 0.29286 \\ 0.14513 \\ 0.26990 \\ 0.49905 \\ 0.16704 \end{array}$	$n \rightarrow \pi^{*}$ $n \rightarrow \pi^{*}$ $n \rightarrow \pi^{*}$ $n \rightarrow \pi^{*}$

DB-FL	Energy	f	Composition	CI	Character
$S_0 \rightarrow S_1$	3.3367 eV/371.58 nm	0.4101	93 → 94	0.69084	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.6665 eV/338.15 nm	0.0013	83 → 94	0.16729	n→π*
			$90 \rightarrow 94$	0.57318	n→π*
			$91 \rightarrow 94$	0.34299	n→π*
$S_0 \rightarrow S_3$	4.1161 eV/301.22 nm	0.0000	86 → 94	0.28907	n→π*
			$86 \rightarrow 98$	0.10694	n→π*
			$00 \rightarrow 04$	0.31115	n→π*
			90 + 94	0.50901	n→π*
			91 → 94	0.12887	n→π*
~ ~		0 00 50	$91 \rightarrow 98$	0.10510	de de
$S_0 \rightarrow S_4$	4.2646 eV/290.73 nm	0.2252	84 → 98	0.10718	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			92 → 94	0.66427	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$93 \rightarrow 95$	0.16150	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow S_5$	4.8725 eV/254.46 nm	0.1149	82 → 94	0.14158	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			87 → 94	0.48250	n→π*
			$89 \rightarrow 94$	0.26198	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$97 \rightarrow 95$	0.15153	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$02 \rightarrow 05$	0.32597	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			93 - 93	0.16293	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
a a	5 0000 11/247 02	0.0001	$93 \rightarrow 97$	0.00001	*
$S_0 \rightarrow S_6$	5.0009 eV/24/.92 nm	0.0001	$83 \rightarrow 94$	0.29281	n→π*
			86 → 94	0.4/262	n→π*
			$90 \rightarrow 94$	0.16543	n→π*
			$90 \rightarrow 95$	0.15/41	$n \rightarrow \pi^*$
			91 → 94	0.20459	$n \rightarrow \pi^*$
			$91 \rightarrow 95$	0.15122	$n \rightarrow \pi^*$
			$91 \rightarrow 100$	0.10478	$\Pi \rightarrow \pi^+$
$S_0 \rightarrow S_7$	5.1294 eV/241.71 nm	0.5358	$89 \rightarrow 94$	0.36396	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$97 \rightarrow 94$	0.19281	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$92 \rightarrow 95$	0.12203	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			02 > 05	0.48566	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$93 \rightarrow 93$	0.20350	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
G . G	5 1507 - 1/240 71	0.0001	$93 \rightarrow 97$	0.50(22	*
$S_0 \rightarrow S_8$	5.1507 eV/240.71 nm	0.0001	83 → 94	0.50632	$n \rightarrow \pi^*$
			86 → 94	0.20909	$n \rightarrow \pi^{+}$
			$90 \rightarrow 95$	0.23037	$n \rightarrow \pi^*$
			$90 \rightarrow 98$	0.11020	$n \rightarrow \pi^*$
			91 → 94	0.15572	$\Pi \rightarrow \pi^*$
			91 → 95	0.13939	$\Pi \rightarrow \eta$
$S_0 \rightarrow S_9$	5.2000 eV/238.43 nm	0.5084	87 → 94	0.48516	n→π*
-			$89 \rightarrow 94$	0.31279	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$97 \rightarrow 95$	0.16389	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$03 \rightarrow 05$	0.30926	$\pi { ightarrow} \pi^*, n { ightarrow} \pi^*$
			$\frac{35}{02} \times \frac{35}{07}$	0.13271	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$
			$y_3 \rightarrow y_1$		

Table S5-6. Electronic transitions involved in the excitation of DB-FL calculated at ω B97XD/6-311G(d) level of theory.

$S_0 \rightarrow S_{10}$	5.3921 eV/229.94 nm	0.0001	$\begin{array}{c} 89 \rightarrow 96 \\ 93 \rightarrow 96 \end{array}$	0.34049 0.59605	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$ $\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_1$	2.2860 eV/542.37 nm	0.0000	$89 \rightarrow 94$ $92 \rightarrow 94$ $93 \rightarrow 94$	$\begin{array}{c} 0.13161 \\ 0.16136 \\ 0.65347 \end{array}$	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$ $\pi \rightarrow \pi^*, n \rightarrow \pi^*$ $\pi \rightarrow \pi^*, n \rightarrow \pi^*$
$S_0 \rightarrow T_2$	2.9297 eV/423.19 nm	0.0000	$84 \rightarrow 94$ $92 \rightarrow 94$ $92 \rightarrow 97$ $93 \rightarrow 94$ $93 \rightarrow 95$	0.17652 0.54959 0.20292 0.17391 0.25630	$\begin{array}{l} \pi \rightarrow \pi^*, n \rightarrow \pi^* \\ \pi \rightarrow \pi^*, n \rightarrow \pi^* \end{array}$
$S_0 \rightarrow T_3$	3.1354 eV/395.44 nm	0.0000	$83 \rightarrow 94$ $90 \rightarrow 94$ $90 \rightarrow 97$ $91 \rightarrow 94$	0.25735 0.55100 0.10185 0.29505	$n \rightarrow \pi^{*}$ $n \rightarrow \pi^{*}$ $n \rightarrow \pi^{*}$ $n \rightarrow \pi^{*}$
$S_0 \rightarrow T_4$	3.8120 eV/325.25 nm	0.0000	$86 \rightarrow 94$ $86 \rightarrow 98$ $90 \rightarrow 94$ $91 \rightarrow 94$ $91 \rightarrow 97$ $91 \rightarrow 98$	$\begin{array}{c} 0.30763 \\ 0.14162 \\ 0.24253 \\ 0.50691 \\ 0.10150 \\ 0.16529 \end{array}$	$\begin{array}{l} n \longrightarrow \pi^{*} \\ n \longrightarrow \pi^{*} \end{array}$
$S_0 \rightarrow T_5$	3.8272 eV/323.96 nm	0.0000	$89 \rightarrow 94$ $92 \rightarrow 98$ $93 \rightarrow 95$	0.23036 0.24300 0.56472	$\begin{array}{l} \pi \rightarrow \pi^*, n \rightarrow \pi^* \\ \pi \rightarrow \pi^*, n \rightarrow \pi^* \\ \pi \rightarrow \pi^*, n \rightarrow \pi^* \end{array}$

Table S5-7. Calculated spin-orbit coupling matrix elements of FLPSs (cm⁻¹), between the emitting states and the perturbing states with different multiplicity, calculated as

 $\sqrt{\left(\left|\langle S_0|H^{SO}|T_{1,x}\rangle\right|^2+\left|\langle S_0|H^{SO}|T_{1,y}\rangle\right|^2+\left|\langle S_0|H^{SO}|T_{1,z}\rangle\right|^2\right)/3}~.$

FLPSs	FL	MB-FL	DB-FL	Ph-FL
$S_1 \rightarrow T_1$	1.27×10-3	4.01	0.26	4.84
$T_1 \rightarrow S_0$	0.27	4.59	0.0056	0.36

Figure S5-1. Isosurface plots of frontier molecular orbitals of FL involved in electron transitions contribute to UV-vis absorption. (Isovalue: ±0.02 a.u.; C: Gray; O: Red; N: Blue; H: White.)

Figure S5-2. Isosurface plots of frontier molecular orbitals of DB-FL involved in electron transitions contribute to UV-vis absorption. (Isovalue: ±0.02 a.u.; C: Gray; O: Red; N: Blue; H: White.)

Figure S5-3. Isosurface plots of frontier molecular orbitals of MB-FL involved in electron transitions contribute to UV-vis absorption. (Isovalue: ±0.02 a.u.; C: Gray; O: Red; N: Blue; H: White.)

Figure S5-4. Isosurface plots of frontier molecular orbitals of Ph-FL involved in electron transitions contribute to UV-vis absorption. (Isovalue: ±0.02 a.u.; C: Gray; O: Red; N: Blue; H: White.)

Figure S5-5 The vibration resolved absorption(a) and emission (b) spectra of DB-FL calculated with B3LYP, CAM-B3LYP and ω B97XD functionals.

6. References

- 1. R. C. Binning and L. A. Curtiss, J. Comput. Chem., 1990, 11, 1206-1216.
- M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654-3665.
- 3. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss, *J. Comput. Chem.*, 2001, **22**, 976-984.
- 4. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 5. C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 6. S. Miertus, E. Scrocco and J. Tomasi, *Chem. Phys.*, 1981, **55**, 117-129.
- 7. R. Cammi and B. Mennucci, J. Chem. Phys., 1999, 110, 9877-9886.
- 8. J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999-3093.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Journal*, 2016.
- 10. O. Vahtras, H. Agren, P. Jorgensen, H. J. A. Jensen, T. Helgaker and J. Olsen, *J. Chem. Phys.*, 1992, **97**, 9178-9187.
- 11. H. Hettema, H. J. A. Jensen, P. Jorgensen and J. Olsen, *J. Chem. Phys.*, 1992, **97**, 1174-1190.
- 12. H. Agren, O. Vahtras, H. Koch, P. Jorgensen and T. Helgaker, *J. Chem. Phys.*, 1993, **98**, 6417-6423.
- 13. J. Olsen, D. L. Yeager and P. Jorgensen, J. Chem. Phys., 1989, 91, 381-388.
- 14. P. Jorgensen, H. J. A. Jensen and J. Olsen, J. Chem. Phys., 1988, 89, 3654-3661.
- K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekstrom, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hattig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenaes, S. Host, I. M. Hoyvik, M. F. Iozzi, B. Jansik, H. J. A. Jensen, D. Jonsson, P. Jorgensen, J. Kauczor, S. Kirpekar, T. Kjrgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Salek, C. C. M. Samson, A. S. de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thogersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski and H. Agren, *Wiley Interdiscip. Rev.-Comput. Mol. Sci.*, 2014, **4**, 269-284.

- 16. Q. Peng, Y. P. Yi, Z. G. Shuai and J. S. Shao, J. Chem. Phys., 2007, 126, 114302.
- 17. Q. Peng, Y. P. Yi, Z. G. Shuai and J. S. Shao, J. Am. Chem. Soc., 2007, 129, 9333-9339.
- 18. Y. L. Niu, Q. A. Peng, C. M. Deng, X. Gao and Z. G. Shuai, *J. Phys. Chem. A*, 2010, **114**, 7817-7831.
- 19. Y. Niu, Q. Peng and Z. Shuai, Sci. China Ser. B-Chem., 2008, 51, 1153-1158.
- 20. Q. Peng, Y. L. Niu, Q. H. Shi, X. Gao and Z. G. Shuai, *J. Chem. Theory Comput.*, 2013, 9, 1132-1143.