Supporting Information

External Electric Field Driven Configurations Transition between Lithium Salt and Electride-like Molecule: Intriguing NLO Switches in Li@Corannulene

Ping-yao Gan,^a Xiao Huang,^a Wen-bo Liu,^a Feng-wei Gao,^{*ab}Zhong-min Su^{bc}

^a Chongqing Research Institute, Changchun University of Science and Technology, No.618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China.

^b School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China.

E-mail: gaofw@cust.edu.cn

^c State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.

Table of contents

Figure S1. Evolutions of the vertical ionisation energy (VIE) value of the Li@corannulene under the vertical F_{-z} ($F_{-z} = 1 \times 10^{-4}$, au) 2

Figure S2. Evolutions of the natural population analysis (NPA) charges of the Li@corannulene under the vertical F_z ($F_z = 1 \times 10^{-4}$, au) 3

Figure S3. Electrostatic potential maps (ESP) of the Li@corannulene with allelic values of $\pm 2.00 \text{ e}^{-2}$ au under the vertical F_{-z} ($F_{-z} = 1 \times 10^{-4}$, au) 4

Figure S4. Evolutions of the frontier molecular orbitals of the Li@corannulene under the vertical F_{-z} ($F_{-z} = 1 \times 10^{-4}$, au) 5

Figure S5. Evolutions of the first hyperpolarizabilities (β_{tot}) of Li@corannulene under the vertical F_z ($F_z = 1 \times 10^{-4}$, au) 6

Table S1. Evolutions of the bond length alternation (BLA) of Li@corannulene under thevertical F_z ($F_z = 1 \times 10^{-4}$, au)7

Figure S1. Evolutions of the vertical ionisation energy (VIE) value of the Li@corannulene under the vertical F_{-z} ($F_{-z} = 1 \times 10^{-4}$, au)

Figure S2. Evolutions of the natural population analysis (NPA) charges of the Li@corannulene under the vertical F_z ($F_z = 1 \times 10^{-4}$, au)

Figure S3. Electrostatic potential maps (ESP) of the Li@corannulene with allelic values of $\pm 2.00 \text{ e}^{-2}$ au under the vertical F_{-z} ($F_{-z} = 1 \times 10^{-4}$, au)

Figure S4. Evolutions of the frontier molecular orbitals of the Li@corannulene under the vertical F_{-z} ($F_{-z} = 1 \times 10^{-4}$, au)

Figure S5. Evolutions of the first hyperpolarizabilities (β_{tot}) of Li@corannulene under the vertical F_z ($F_z = 1 \times 10^{-4}$, au)

$F_{-z} = 1 \times 10^{-4} (au)$	BLA (Angstrom)
0	0.01
40	0.01
80	0.02
100	0.02
110	0.00

Table S1. Evolutions of the bond length alternation (BLA) of Li@corannulene under the vertical F_z ($F_z = 1 \times 10^{-4}$, au)

Li@corannulene The total energy = -775.695		ergy = -775.695 au	
Atom	X	Y	Z
С	0.83324	-3.18907	-0.19262
С	-0.54986	-3.25038	-0.19229
Н	-1.02243	-4.17466	-0.51877
С	-1.39563	-2.09926	0.1229
С	-2.7755	-1.77794	-0.19262
Н	-3.37495	-2.57389	-0.63723
С	-3.26121	-0.48148	-0.19229
Н	-4.28629	-0.31765	-0.51877
С	-2.42779	0.67862	0.1229
С	-2.54859	2.09024	-0.19262
Н	-3.49083	2.41439	-0.63723
С	-1.46568	2.95281	-0.19229
Н	-1.62664	3.97834	-0.51877
С	-0.10483	2.51867	0.1229
С	1.20038	3.06978	-0.19262
Н	1.21749	4.06606	-0.63723
С	2.35537	2.30641	-0.19229
Н	3.28097	2.7764	-0.51877
С	2.363	0.87801	0.1229
С	3.29047	-0.19302	-0.19262
Н	4.24328	0.09858	-0.63723
С	2.92138	-1.52736	-0.19229
Н	3.65439	-2.26243	-0.51877
С	1.56524	-1.97603	0.1229
С	0.74706	-0.95024	0.64433
С	1.13458	0.41685	0.64433
С	-0.04585	1.20787	0.64433
С	-1.16292	0.32965	0.64433
С	-0.67288	-1.00413	0.64433
Н	1.405	-4.00514	-0.63723
Li	0.000	0.000	-1.17665

Cartesian Coordinates of the optimized structures ($F_{\pm z} = 0$, au)