Supplementary information

Investigation of phase transition, mechanical behavior and lattice thermal conductivity on halogen perovskite using machine learning interatomic potentials

Yong-Bo Shi,
1 Yuanyuan Chen, 1 Haikuan Dong, $^{1,\,*}$ Ha
o Wang, 2 and Ping Qian $^{3,\,\dagger}$

¹College of Physical Science and Technology, Bohai University, Jinzhou 121013, PR China ²Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, PR China ³Department of Physics, University of Science and Technology Beijing, Beijing 100083, PR China

^{*} donghaikuan@163.com

[†] qianping@ustb.edu.cn

Figure S1. The correlations between the transverse strains (longitudinal coordinates) and applied uniaxial strains (horizontal coordinates) for CsPbX₃ (X=Cl, Br and I), (a) CsPbCl₃, (b) CsPbBr₃, (c) CsPbI₃. The black symbol gives the DFT result. The red symbol represents the NEP-based MD prediction with NpT ensemble at 0.1 K. Poisson's ratio is derived from the slope of the linear fitting, as shown in figure.

Figure S2. Pressure as a function of uniaxial strain for CsPbX₃ (X=Cl, Br and I), (a) CsPbCl₃, (b) CsPbBr₃, (c) CsPbI₃. The NEP-based MD simulations with NpT ensemble are performed in a large supercell containing 16000 atoms. The system at 0.10 K is first relaxed for 1 ns to obtain an equilibrium state, and then uniaxial strain is applied to the system with the deformation rate of 10^{-6} Å/step.

Figure S3. racture behavior of the CsPbX₃ predicted by NEP-based MD simulations with NpT ensemble. (a)-(c) for CsPbCl₃, (d)-(f) for CsPbBr₃, (g)-(i) for CsPbI₃. (a)/(d)/(g), (b)/(e)/(h) and (c)/(f)/(i) represent the strain applied to the x, y and z-axis, respectively.

Figure S4. Lattice thermal conductivity of halogen perovskite along x-axis direction. The black, red solid and blue dashed lines represent 8 independent running, their average value and error bounds, respectively. (a)/(d)/(g), (b)/(e)/(h) and (c)/(f)/(i) represent the results of CsPbCl₃, CsPbBr₃, CsPbI₃, respectively.

Figure S5. Lattice thermal conductivity of halogen perovskite along z-axis direction. The black, red solid and blue dashed lines represent 8 independent running, their average value and error bounds, respectively. (a)/(d)/(g), (b)/(e)/(h) and (c)/(f)/(i) represent the results of CsPbCl₃, CsPbBr₃, CsPbI₃, respectively.

Figure S6. The spectral thermal conductivity of halogen perovskite. (a), (b) and (c) represent the results of $CsPbCl_3$, $CsPbBr_3$, $CsPbI_3$, respectively.