Electronic Supplementary Information (ESI)

Correlation of solute diffusion with dynamic viscosity in lithium salt added (choline chloride + glycerol) deep eutectic solvent

Manish Kumar and Siddharth Pandey*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi -

110016, India.

*To whom correspondence should be addressed.

E-mail: sipandey@chemistry.iitd.ac.in, Phone: +91-11-26596503, Fax: +91-11-26581102

Table of Contents

Table S1S2
Table S2S3
Table S3
Table S4
Table S5
Table S6
Table S7S8
Table S8
Table S9
Table S10S18
Table S11
Table S12
Table S13
Table S14
Table S15

Page No.

Table S16	S27
Table S17	
Fig. S1	

m	(-) Slope (g.cm ⁻³ .K ⁻¹) × 10 ⁻⁴						
(malleral)	Chuadina	Dalima17	1 wt% water in				
(mol.kg ⁻¹)	Glycenne	Kenne"	glycerol ¹⁹				
0.00	6.12 ± 0.23	6.22 ± 0.21	6.78 ± 0.16				
0.42	-	6.40 ± 0.20	-				
0.50	6.14 ± 0.25	-	$\boldsymbol{6.74\pm0.19}$				
0.83	-	6.21 ± 0.27	-				
1.00	$\boldsymbol{6.16} \pm \boldsymbol{0.26}$	-	6.69 ± 0.22				
1.26	-	$\boldsymbol{6.17\pm0.29}$	-				
1.50	$\boldsymbol{6.16 \pm 0.27}$	-	6.64 ± 0.25				
1.67	-	$\boldsymbol{6.17\pm0.31}$	-				
2.00	6.18 ± 0.28	-	6.60 ± 0.27				
2.10	-	$\boldsymbol{6.10\pm0.33}$	-				
2.50	6.19 ± 0.29	-	6.56 ± 0.30				
3.00	6.22 ± 0.31	-	6.53 ± 0.32				

Table S1: Linear regression analysis of density ($\rho/g.cm^{-3}$) vs *T*(K) data for LiCl-added Glyceline, Reline, and 1 wt% water in glycerol, respectively.

	Slope (g ² .cm ⁻³ .mol ⁻¹)						
T (K)	Glyceline	Reline ¹⁷	1 wt% water in				
	•		glycerol ¹⁹				
298	$16.20\pm0.00_1$	$18.20\pm0.00_2$	$16.70\pm0.00_1$				
313	$16.50\pm0.00_1$	$18.20\pm0.00_2$	$17.20\pm0.00_1$				
328	$16.40\pm0.00_1$	$19.00\pm0.00_2$	$17.50\pm0.00_1$				
343	$16.20\pm0.00_1$	$18.90\pm0.00_2$	$17.40\pm0.00_1$				
358	$16.00\pm0.00_1$	$18.90\pm0.00_2$	$17.20\pm0.00_1$				

Table S2: Linear regression analysis of density (ρ /g.cm⁻³) vs m_{LiCl} (mol.kg⁻¹) data for LiCl-added Glyceline, Reline, and 1 wt% water in glycerol, respectively.

Т (К)	This work	Literature ^a	Literature ^b
298	387.93	345.7	369
313	156.49	-	146
328	74.45	60.2	71.8
343	40.48	-	39.6
358	24.30	-	24.3

Table S3: Comparison of dynamic viscosity data obtained in this work with the data provided in the literature for Glyceline at different temperatures.

^aS. Barik, M. Chakraborty and M. Sarkar, J. Phys. Chem. B, 2020, **124**, 2864–2878.

^bV. Agieienko and R. Buchner, J. Chem. Eng. Data, 2021, 66, 780-792.

m _{LiCl}	$() \land$	P		D 2	E _{a,η}
(mol.kg ⁻¹)	(-) <i>A</i>	D	$I_0(\mathbf{K})$	N ⁻	(kJ.mol ⁻¹)
0.0	2.71	1108.43	170.38	0.999	50.18 ± 1.05
0.5	3.01	1273.87	164.60	0.999	52.79 ± 1.12
1.0	2.83	1284.88	169.45	0.999	57.33 ± 1.15
1.5	3.04	1399.62	168.75	0.998	61.78 ± 0.95
2.0	2.92	1403.77	174.52	0.998	67.88 ± 1.01
2.5	3.38	1596.43	169.71	0.999	71.53 ± 1.30
3.0	3.70	1738.34	168.71	0.998	76.68 ± 1.70

Table S4: Recovered empirical VFT parameters from the analysis of $\ln (\eta/\text{mPa.s})$ vs 1/T (K⁻¹) for LiCl-added Glyceline mixtures and corresponding activation energy of viscous flow ($E_{a,\eta}$) at 298 K.

		^E _{a,η} (kJ.mol ⁻¹)	
m _{LiCl} - (mol.kg ⁻¹)	Glyceline	Reline ¹⁷	1 wt% water in glycerol ¹⁹
0.00	50.18 ± 1.05	52.87 ± 1.89	51.73 ± 1.44
0.42	-	57.30 ± 1.84	-
0.50	52.79 ± 1.12	-	53.32 ± 1.48
0.83	-	57.82 ± 1.86	-
1.00	57.33 ± 1.15	-	54.81 ± 1.49
1.26	-	58.78 ± 0.63	-
1.50	61.78 ± 0.95	-	55.33 ± 0.97
1.67	-	64.61 ± 0.64	-
2.00	67.88 ± 1.01	-	55.62 ± 0.80
2.10	-	68.40 ± 0.67	-
2.50	71.53 ± 1.30	-	57.27 ± 0.54
3.00	76.68 ± 1.70	-	57.30 ± 0.76

Table S5: Comparison of activation energy of viscous flow $({}^{E_{a,\eta}})$ for LiCl-added Glyceline, Reline, and 1 wt% water in glycerol, respectively, at 298 K.

	Slope (mol ⁻¹ .kg)							
$T(\mathbf{K})$ —	Glyceline	Reline ¹⁷	1 wt% water in glycerol ¹⁹					
298	1.21 ± 0.15	-	-					
313	1.08 ± 0.11	-	0.68 ± 0.01					
328	0.96 ± 0.11	1.41 ± 0.13	0.63 ± 0.01					
343	0.85 ± 0.10	1.26 ± 0.10	0.59 ± 0.02					
358	0.76 ± 0.10	1.10 ± 0.09	0.54 ± 0.02					

Table S6: Linear regression analysis of ln (η /mPa.s) vs m_{LiCl} (mol.kg⁻¹) data for LiCl-added Glyceline, Reline, and 1 wt% water in glycerol, respectively.

	m _{LiCl}							
	(mol.kg ⁻¹)	0.0	0.5	1.0	1.5	2.0	2.5	3.0
<i>I</i> (K)	τ.	88.0	873	86.2	81.2	5 27	79.5	79.9
	(q.)	(1.5)	(3.0)	(0.6)	(1.3)	(0.3)	(2.6)	(2.8)
298	(u]) T.	105	105	187	183	181	181	(2.0)
	\mathfrak{l}_2	(08.5)	(07.0)	(00.4)	(08.7)	(00.7)	(07.4)	(07.2)
	(u ₂)	(90.3)	(97.0)	(99.4)	(90.7)	(99.7)	(97.4)	(97.2)
	χ-	1.07	1.08	1.03	1.09	70.6	1.10	70.1
	$ au_1$	84.2	80.8	81.6	82.4	/9.6	/6./8	/9.1
212	(α ₁)	(1.3)	(3.0)	(0.3)	(1.2)	(2.4)	(1.9)	(1.8)
313	$ au_2$	184	184	175	171	173	169	166
	(a ₂)	(98.7)	(97.0)	(99.7)	(98.8)	(97.6)	(98.1)	(98.2)
	χ^2	1.09	1.03	1.08	1.07	1.13	1.09	1.13
	τ_1	81.4	80.7	78.5	78.7	72.9	77.6	74.5
328	(α ₁)	(1.3)	(4.0)	(1.1)	(0.7)	(2.5)	(1.9)	(1.7)
	$ au_2$	173	175	165	161	162	159	155
	(a ₂)	(98.7)	(96.0)	(98.9)	(99.3)	(97.5)	(98.1)	(98.3)
	χ^2	1.07	1.08	1.05	1.07	1.16	1.10	1.14
	$ au_1$	77.3	73.0	72.5	72.9	68.9	72.0	70.7
	(α ₁)	(1.8)	(1.1)	(1.3)	(1.1)	(2.6)	(1.1)	(1.9)
343	$ au_2$	163	158	156	150	152	147	146
	(a ₂)	(98.2)	(98.9)	(98.7)	(98.9)	(97.4)	(98.9)	(98.1)
	χ^2	1.03	1.05	1.06	1.06	1.13	1.14	1.13
	$ au_1$	72.8	67.4	69.5	70.7	67.0	74.5	69.1
	(α ₁)	(1.8)	(1.9)	(0.3)	(2.0)	(3.4)	(1.0)	(1.3)
358	$ au_2$	151	148	144	142	144	137	135
	(a ₂)	(98.2)	(98.1)	(99.7)	(98.0)	(96.6)	(99.0)	(98.7)
	χ^2	1.05	1.09	1.05	1.11	1.15	1.05	1.12

Table S7: Recovered excited-state intensity decay parameters for pyrene (10 μ M; excitation with 340 nm Nano-LED; emission collected at 373 nm) dissolved in LiCl-added Glyceline. Errors associated with decay times are $\leq \pm 2\%$.

	$T({ m K}) = 298$								
[CH ₃ N (M)	m _{LiCl} (mol.kg ⁻¹) O ₂]	0.0	0.5	1.0	1.5	2.0	2.5	3.0	
	$ au_1$	88.0	87.3	86.2	81.2	5.27	79.5	79.9	
	(α ₁)	(1.5)	(3.0)	(0.6)	(1.3)	(0.3)	(2.6)	(2.8)	
0.00	$ au_2$	195	195	187	183	181	181	179	
	(a ₂)	(98.5)	(97.0)	(99.4)	(98.7)	(99.7)	(97.4)	(97.2)	
	χ^2	1.07	1.08	1.05	1.09	1.11	1.10	1.07	
	$ au_1$	58.9	15.3	19.4	10.5	25.9	3.95	2.20	
	(a ₁)	(8.4)	(1.8)	(1.8)	(1.0)	(1.8)	(0.5)	(0.6)	
0.05	$ au_2$	124	127	142	149	164	163	163	
	(a ₂)	(91.6)	(98.2)	(98.2)	(99.0)	(98.2)	(99.5)	(99.4)	
	χ^2	1.03	1.08	1.14	1.11	1.12	1.12	1.05	
	τ_1	16.2	28.9	19.8	25.3	24.4	22.5	8.01	
	(a ₁)	(3.2)	(7.2)	(3.4)	(3.4)	(2.3)	(2.6)	(1.7)	
0.11	$ au_2$	80.5	98.3	114	128	150	152	150	
	(a ₂)	(96.8)	(92.8)	(96.6)	(96.6)	(97.7)	(97.4)	(98.3)	
	χ^2	1.03	1.08	1.08	1.08	1.20	1.14	1.14	
	$ au_1$	7.67	13.6	12.1	19.8	13.8	10.8	3.47	
	(a ₁)	(2.8)	(4.9)	(3.7)	(4.7)	(2.2)	(2.2)	(2.3)	
0.16	$ au_2$	59.9	76.3	93.2	112	137	138	139	
	(a ₂)	(97.2)	(95.1)	(96.3)	(95.3)	(97.8)	(97.8)	(97.7)	
	χ^2	1.13	1.03	1.02	1.16	1.18	1.20	1.17	
	τ ₁	5.77	10.2	8.70	19.5	17.0	13.9	3.00	
	(a ₁)	(3.8)	(5.2)	(4.2)	(6.7)	(4.1)	(3.5)	(3.0)	
0.21	$ au_2$	48.0	60.7	78.8	100	120	128	131	
	(a ₂)	(96.2)	(94.8)	(95.8)	(93.3)	(95.9)	(96.5)	(97.0)	
	χ^2	1.07	1.11	1.06	1.18	1.11	1.15	1.19	

Table S8: Recovered excited-state intensity decay parameters for pyrene (10 μ M; excitation with 340 nm Nano-LED; emission collected at 373 nm) dissolved in the LiCl-added Glyceline at varying quencher (CH₃NO₂) concentration. Errors associated with decay times are $\leq \pm 2\%$.

	τ_1	5.39	7.49	11.6	15.8	17.3	14.8	2.92
0.27	(a ₁)	(5.0)	(5.7)	(6.9)	(7.1)	(5.4)	(4.4)	(3.9)
0.27	$ au_2$	39.4	52.3	69.2	88.5	109	120	123
	(a ₂)	(95.0)	(94.3)	(93.1)	(92.9)	(94.6)	(95.6)	(96.1)
	χ^2	1.14	1.02	1.09	1.20	1.09	1.14	1.17
	$ au_1$	5.76	3.96	7.83	13.8	15.3	12.7	2.68
	(α 1)	(6.9)	(5.0)	(6.4)	(7.2)	(5.9)	(5.0)	(4.6)
0.32	$ au_2$	33.7	43.3	60.3	79.2	99.7	113	114
	(a ₂)	(93.1)	(95.0)	(93.6)	(92.8)	(94.1)	(95.0)	(95.4)
	χ^2	1.00	1.23	1.16	1.19	1.10	1.19	1.22
	$ au_1$	4.82	4.26	7.48	10.2	9.66	11.3	2.45
	(α 1)	(7.6)	(5.8)	(7.7)	(7.6)	(5.1)	(5.3)	(3.6)
0.37	$ au_2$	28.8	38.2	53.8	69.2	90.2	105	108
	(a ₂)	(92.4)	(94.2)	(92.3)	(92.4)	(94.9)	(94.7)	(96.4)
	χ^2	1.12	1.11	1.18	1.27	1.19	1.16	1.20

T(K) = 313

	m_{LiCl}							
[CH ₃ N	(mol.kg^{-1}) O_2	0.0	0.5	1.0	1.5	2.0	2.5	3.0
(M)	-							
	$ au_1$	84.2	80.8	81.6	82.4	79.6	76.78	79.1
	(α ₁)	(1.3)	(3.0)	(0.3)	(1.2)	(2.4)	(1.9)	(1.8)
0.00	$ au_2$	184	184	175	171	173	169	166
	(a ₂)	(98.7)	(97.0)	(99.7)	(98.8)	(97.6)	(98.1)	(98.2)
	χ^2	1.09	1.03	1.08	1.07	1.13	1.09	1.13
	$ au_1$	7.58	26.1	15.7	9.32	56.9	7.47	4.23
	(α ₁)	(1.1)	(4.8)	(2.0)	(1.2)	(8.7)	(0.9)	(0.7)
0.05	$ au_2$	76.0	86.7	103	114	137	140	142
	(a ₂)	(98.9)	(95.2)	(98.0)	(98.8)	(91.3)	(99.1)	(99.3)
	χ^2	1.01	0.98	1.02	1.07	1.12	1.09	1.08
0.11	$ au_1$	8.23	7.21	11.5	10.7	8.93	15.7	6.08
0.11	(α 1)	(3.5)	(3.1)	(3.7)	(2.8)	(1.6)	(2.4)	(1.7)

	$ au_2$	46.0	54.9	71.7	85.1	112	118	118
	(a ₂)	(96.5)	(96.9)	(96.3)	(97.2)	(98.4)	(97.6)	(98.3)
	χ^2	1.06	1.01	1.03	1.06	1.06	1.06	1.16
	τ_1	5.82	6.87	8.04	12.8	8.23	17.2	3.41
	(α ₁)	(4.6)	(5.1)	(4.9)	(5.5)	(2.2)	(4.5)	(3.0)
0.16	$ au_2$	32.3	41.2	54.1	69.1	96.0	101	104
	(a ₂)	(95.4)	(94.9)	(95.1)	(94.5)	(97.8)	(95.5)	(97.0)
	χ^2	1.04	1.01	1.05	1.12	1.09	1.10	1.15
	$ au_1$	5.20	4.51	6.35	7.98	10.4	11.6	1.89
	(α 1)	(7.6)	(5.5)	(6.4)	(5.7)	(4.3)	(4.9)	(3.8)
0.21	$ au_2$	25.5	31.6	43.3	56.3	77.2	88.6	93.0
	(a ₂)	(92.4)	(94.5)	(93.6)	(94.3)	(95.7)	(95.1)	(96.2)
	χ^2	1.05	1.10	1.05	1.09	1.11	1.13	1.15
	τ_1	4.20	3.62	4.87	6.87	7.87	15.8	2.88
0.27	(α 1)	(8.7)	(6.2)	(6.3)	(6.2)	(5.0)	(8.3)	(5.0)
0.27	$ au_2$	20.4	26.4	35.3	47.4	64.9	80.6	83.4
	(a ₂)	(91.3)	(93.8)	(93.7)	(93.8)	(95.0)	(91.7)	(95.0)
	χ^2	1.12	1.05	1.14	1.12	1.15	1.13	1.20
	$ au_1$	4.69	3.58	5.06	4.84	6.62	6.49	2.59
	(α 1)	(15.3)	(9.4)	(8.9)	(6.7)	(5.9)	(5.0)	(6.1)
0.32	$ au_2$	17.7	22.3	30.3	41.1	56.9	69.0	74.3
	(a ₂)	(84.7)	(90.6)	(91.1)	(93.3)	(94.1)	(95.0)	(93.9)
	χ^2	1.21	1.14	1.13	1.15	1.14	1.16	1.26
	τ_1	3.68	3.69	4.27	6.51	5.86	5.76	2.35
	(α 1)	(14.2)	(12.5)	(10.8)	(10.8)	(6.8)	(6.0)	(5.7)
0.37	$ au_2$	14.8	19.7	27.1	36.7	51.4	62.6	65.7
	(a ₂)	(85.8)	(87.5)	(89.2)	(89.2)	(93.2)	(94.0)	(94.3)
	χ^2	1.20	1.13	1.19	1.09	1.17	1.16	1.15

 m_{LiCl} (mol.kg⁻¹) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 [CH₃NO₂] **(M)** 81.4 72.9 80.7 78.5 78.7 77.6 74.5 τ_1 **(α**₁**)** (1.3)(4.0)(1.1)(0.7)(2.5)(1.9)(1.7)0.00 173 175 165 161 162 159 155 τ_2 (98.7)(96.0)(98.9)(99.3)(97.5)(98.3)(**a**₂) (98.1) χ^2 1.07 1.08 1.05 1.07 1.16 1.10 1.14 6.98 7.21 4.58 7.06 6.01 19.3 3.78 τ_1 (1.2)(2.0)(1.7)(1.3)(1.2)(2.2)(0.8)**(α**₁**)** 0.05 47.0 53.4 68.7 78.4 94.4 111 116 τ_2 (98.8)(98.0)(98.3)(98.7)(98.8)(97.8)(99.2)**(α**₂) χ^2 1.07 1.01 0.99 1.04 1.06 1.07 1.06 4.63 5.25 7.69 10.6 8.23 7.71 5.28 τ_1 (4.3)(3.9)(3.2)(3.3)(2.6)(2.8)**(α**₁) (2.1)0.11 26.4 31.6 41.6 52.5 76.4 81.1 84.2 τ_2 (95.7)(96.1)(96.8)(96.7)(97.4)(97.9)(a₂) (97.2) χ^2 1.08 1.01 1.06 1.15 1.05 1.04 1.10 4.78 4.44 5.09 6.82 6.39 11.7 2.39 τ_1 **(α**₁) (8.2)(6.5)(6.2)(6.1) (3.2)(5.9)(3.8)0.16 18.6 22.9 30.4 39.4 62.4 65.0 68.3 τ_2 **(α**₂) (91.8)(93.5)(93.8)(93.9)(96.8)(94.0)(96.2) χ^2 1.03 1.09 1.06 1.04 1.01 1.06 1.15 4.29 3.63 3.23 5.61 6.13 6.73 1.18 τ_1 **(α**₁) (14.9)(9.8) (7.4)(7.7)(5.2)(5.6) (4.9)0.21 14.4 17.8 23.5 31.1 45.5 52.3 55.8 τ_2 (a₂) (85.1) (90.2)(92.6) (92.3)(94.8)(94.4)(95.1) χ^2 1.06 1.20 1.02 1.11 1.10 1.09 1.24 5.00 5.54 3.11 4.06 3.93 5.19 2.24 τ_1 0.27 **(α**₁) (12.9)(15.1)(13.6)(7.8)(7.9)(6.4)(6.6)

T(K) = 328

19.7

25.4

36.6

44.0

48.4

11.1

 τ_2

14.7

	(a ₂)	(87.1)	(84.9)	(86.4)	(92.2)	(92.1)	(93.6)	(93.4)
	χ^2	1.12	1.10	1.10	1.16	1.13	1.03	1.16
	$ au_1$	2.26	3.26	3.14	3.33	3.36	3.06	1.88
	(α ₁)	(13.3)	(17.4)	(12.9)	(9.5)	(6.8)	(5.7)	(8.2)
0.32	$ au_2$	8.93	12.2	16.2	21.8	30.2	38.0	41.9
	(a ₂)	(86.7)	(82.6)	(87.1)	(90.5)	(93.2)	(94.3)	(91.3)
	χ^2	1.09	1.17	1.04	1.08	1.06	1.10	1.25
	$ au_1$	1.79	2.26	2.77	2.78	2.74	3.62	1.56
	(α ₁)	(12.8)	(14.9)	(14.5)	(11.7)	(7.7)	(9.3)	(7.6)
0.37	$ au_2$	7.38	10.1	14.0	18.7	26.1	34.0	36.3
	(a ₂)	(87.2)	(85.1)	(85.5)	(88.3)	(92.3)	(90.7)	(92.4)
	χ^2	0.93	1.19	1.03	1.22	1.25	1.14	1.17

T(K) = 343

[CH ₃ N	m _{LiCl} (mol.kg ⁻¹) [O ₂]	0.0	0.5	1.0	1.5	2.0	2.5	3.0
(111)	τ ₁	77.3	73.0	72.5	72.9	68.9	72.0	70.7
	(a ₁)	(1.8)	(1.1)	(1.3)	(1.1)	(2.6)	(1.1)	(1.9)
0.00	$ au_2$	163	158	156	150	152	147	146
	(a ₂)	(98.2)	(98.9)	(98.7)	(98.9)	(97.4)	(98.9)	(98.1)
	χ^2	1.03	1.05	1.06	1.06	1.13	1.14	1.13
	$ au_1$	4.29	4.54	3.31	3.54	8.52	8.30	5.39
	(α ₁)	(2.2)	(2.1)	(1.5)	(1.4)	(2.1)	(1.8)	(1.3)
0.05	$ au_2$	29.1	35.5	44.2	51.3	65.1	79.1	88.1
	(a ₂)	(97.8)	(97.9)	(98.6)	(98.6)	(97.9)	(98.2)	(98.7)
	χ^2	1.03	1.11	1.04	1.06	1.08	1.07	1.05
	$ au_1$	3.42	4.34	5.29	4.36	5.29	5.37	5.11
	(α ₁)	(5.7)	(6.7)	(7.3)	(3.8)	(2.7)	(2.7)	(3.1)
0.11	$ au_2$	16.9	20.8	25.7	31.5	48.6	51.9	54.0
	(a ₂)	(94.3)	(93.3)	(92.7)	(96.2)	(97.3)	(97.3)	(96.9)
	χ^2	1.12	1.17	1.05	1.15	1.09	1.04	1.06

	τ_1	3.27	3.28	3.99	2.68	5.02	3.60	2.09
	(α 1)	(11.2)	(8.8)	(10.1)	(5.9)	(4.2)	(4.1)	(5.5)
0.16	$ au_2$	11.2	14.1	18.1	22.3	37.7	37.0	41.0
	(a ₂)	(88.8)	(91.2)	(89.9)	(94.1)	(95.8)	(95.9)	(94.5)
	χ^2	1.14	1.23	1.02	1.15	1.09	1.07	1.18
	τ_1	1.68	2.92	3.12	2.49	3.31	4.52	2.79
	(α ₁)	(7.4)	(14.6)	(12.3)	(8.0)	(5.6)	(7.2)	(8.0)
0.21	$ au_2$	8.00	10.7	13.5	17.3	25.4	29.9	33.3
	(a ₂)	(92.6)	(85.4)	(87.7)	(92.0)	(94.4)	(92.8)	(92.0)
	χ^2	1.08	1.03	1.16	1.16	1.10	1.08	1.19
	τ_1	2.16	2.09	2.61	2.81	4.00	2.40	1.65
0.27	(α ₁)	(12.7)	(13.9)	(13.3)	(12.2)	(10.6)	(7.1)	(9.4)
0.27	$ au_2$	6.53	8.44	10.7	14.2	20.6	24.0	27.1
	(a ₂)	(87.3)	(86.1)	(86.7)	(87.8)	(89.4)	(92.9)	(90.6)
	χ^2	1.07	1.07	1.09	1.21	1.14	1.07	1.26
	τ_1	0.91	0.92	1.77	1.57	2.98	2.61	1.59
	(α ₁)	(10.6)	(10.4)	(14.4)	(9.9)	(12.3)	(9.4)	(11.8)
0.32	$ au_2$	5.2	6.6	9.0	11.6	17.0	21.5	23.3
	(a ₂)	(89.4)	(89.6)	(85.6)	(90.1)	(87.7)	(90.6)	(88.2)
	χ^2	0.99	0.99	1.22	1.28	1.07	1.13	1.16
	τ_1	1.07	1.13	1.39	1.87	2.26	2.38	1.80
	(α ₁)	(12.8)	(14.2)	(14.5)	(15.4)	(13.0)	(11.6)	(11.1)
0.37	$ au_2$	4.52	5.55	7.38	10.4	14.4	18.3	20.3
	(a ₂)	(87.2)	(85.8)	(85.5)	(84.6)	(87.0)	(88.4)	(88.9)
	χ^2	0.88	0.96	1.11	1.28	1.23	1.30	1.26

 m_{LiCl} (mol.kg⁻¹) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 [CH₃NO₂] **(M)** 67.4 70.7 67.0 69.1 72.8 69.5 74.5 τ_1 (2.0)**(α**₁**)** (1.8)(1.9)(0.3)(3.4)(1.0)(1.3)0.00 151 148 144 142 144 137 135 τ_2 (99.7) (98.2)(98.1)(98.0)(96.6)(99.0)(98.7)(**a**₂) 1.09 χ^2 1.05 1.05 1.11 1.15 1.05 1.12 3.42 4.14 3.33 3.17 6.01 4.08 4.23 τ_1 (3.2) (3.8)(2.5)(2.1)(2.7)(1.6)(1.4)**(α**₁**)** 0.05 19.5 23.6 29.0 33.6 43.8 54.4 62.1 τ_2 (96.8)(97.5) (97.9)(97.3)(98.4)(98.6)**(α**₂) (96.2) χ^2 1.18 1.17 1.09 1.09 1.03 1.09 1.11 4.39 4.22 3.81 4.05 3.86 4.48 3.14 τ_1 (7.7)(4.0)(3.5)**(α**₁) (15.4)(12.5)(8.5)(3.4)0.11 13.5 15.8 20.0 30.8 33.0 33.0 τ_2 11.0 (84.6)(87.5)(91.5)(92.3)(96.0)(96.5)(a₂) (96.6) χ^2 1.09 1.04 1.09 1.10 1.10 1.06 1.11 2.17 2.18 2.91 2.83 3.69 2.26 3.13 τ_1 **(α**₁) (12.7)(9.1) (12.7)(9.4)(6.9)(6.1)(8.2)0.16 7.16 8.48 10.9 13.4 22.5 22.3 24.9 τ_2 (**a**₂) (87.3)(90.9)(87.3)(90.6)(93.1)(93.9)(91.8) χ^2 0.94 1.00 0.94 1.10 1.15 1.03 1.25 1.35 1.14 1.92 1.86 2.35 2.59 1.93 τ_1 (8.9)(9.5) (12.1)(10.2)(8.7)(8.8)(10.4)**(α**₁) 0.21 5.16 6.08 7.89 10.2 15.2 17.4 19.2 τ_2 (a₂) (91.1) (90.5)(87.9) (89.8)(91.3)(91.2)(89.6)0.99 χ^2 0.89 1.14 1.29 1.16 1.15 1.37 0.98 1.36 1.81 1.49 2.49 2.03 1.54 τ_1 0.27 **(α**₁) (17.0)(10.6)(17.3)(12.8)(13.9)(10.7)(13.4)4.14 4.83 6.34 8.29 12.0 13.8 15.8 τ_2

T(K) = 358

	(a ₂)	(83.0)	(89.4)	(82.7)	(87.2)	(86.1)	(89.3)	(86.6)
	χ^2	0.93	1.07	1.16	1.26	1.23	1.18	1.11
	$ au_1$	1.09	0.95	1.43	1.43	1.45	1.89	1.23
	(α 1)	(16.4)	(14.3)	(17.2)	(17.1)	(12.5)	(12.7)	(11.4)
0.32	$ au_2$	3.33	4.15	5.31	7.13	9.57	12.2	13.3
	(a ₂)	(83.6)	(85.7)	(82.8)	(82.9)	(87.5)	(87.3)	(88.6)
	χ^2	0.97	1.08	1.03	1.25	1.25	1.36	1.32
	$ au_1$	0.63	1.31	1.09	1.12	1.74	1.38	1.36
	(α ₁)	(14.6)	(26.2)	(19.8)	(18.4)	(17.2)	(13.5)	(12.6)
0.37	$ au_2$	2.79	3.78	4.58	5.89	8.28	9.90	10.4
	(a ₂)	(85.4)	(73.8)	(80.2)	(81.6)	(82.8)	(86.5)	(87.4)
	χ^2	1.07	0.91	1.15	1.21	1.43	1.42	1.45

$T(\mathbf{v})$	Slope	D 2
r (K)	(kg.L.mol ⁻² .s ⁻¹)	K ²
298	0.22 ± 0.03	0.944
313	0.47 ± 0.06	0.939
328	0.91 ± 0.12	0.920
343	1.54 ± 0.17	0.916
358	2.34 ± 0.25	0.883

Table S9: Linear regression analysis of k_q (M⁻¹.s ⁻¹) vs m_{LiCl} (mol.kg⁻¹) data for pyrene in LiCl-added Glyceline.

	m _{LiCl}							
	(mol.kg ⁻¹)	0.0	0.5	1.0	1.5	2.0	2.5	3.0
(M)	U ₂]							
	τ ₁	52.1	66.9	69.9	70.9	49.4	49.0	48.7
	(α ₁)	(1.2)	(2.7)	(2.2)	(2.5)	(0.7)	(0.2)	(0.9)
0.00	$ au_2$	147	147	144	146	142	140	139
	(a ₂)	(98.8)	(97.3)	(97.8)	(97.5)	(99.3)	(99.3)	(99.1)
	χ^2	1.10	1.10	1.06	1.08	0.99	0.98	1.06
	τ ₁	1.60	2.14	1.82	2.49	3.64	2.88	1.72
	(α 1)	(3.6)	(4.7)	(3.1)	(3.0)	(4.4)	(2.8)	(1.9)
0.05	$ au_2$	9.78	11.2	14.0	17.5	19.8	24.1	32.3
	(a ₂)	(96.4)	(95.3)	(96.9)	(97.0)	(95.6)	(97.2)	(98.1)
	χ^2	1.26	1.16	1.04	1.17	0.98	1.10	0.99
	τ ₁	1.88	1.30	1.80	1.33	1.91	3.03	2.70
	(α 1)	(12.4)	(5.8)	(7.8)	(4.9)	(6.7)	(8.7)	(5.3)
0.11	$ au_2$	5.01	5.59	7.39	8.72	10.2	13.5	18.5
	(a ₂)	(87.6)	(94.2)	(92.2)	(95.1)	(93.3)	(91.3)	(94.7)
	χ^2	0.98	1.15	1.18	1.02	1.21	1.08	1.07
	$ au_1$	0.43	0.85	1.09	1.28	1.11	1.50	1.71
	(a ₁)	(7.8)	(10.8)	(7.6)	(9.8)	(8.5)	(8.5)	(7.1)
0.16	$ au_2$	3.13	3.76	4.76	6.00	6.71	8.86	12.47
	(a ₂)	(92.2)	(89.2)	(92.4)	(90.2)	(91.5)	(91.5)	(92.9)
	χ^2	0.99	0.97	0.96	1.03	1.05	1.16	1.16
	τ_1	0.63	1.06	1.16	1.10	0.75	1.42	1.65
	(α ₁)	(11.5)	(13.5)	(14.6)	(13.0)	(11.1)	(12.3)	(10.2)
0.21	$ au_2$	2.42	2.72	3.66	4.46	5.00	7.01	9.51
	(a ₂)	(88.5)	(86.5)	(85.4)	(87.0)	(88.9)	(87.7)	(89.8)
	χ^2	1.12	1.21	0.81	1.00	1.23	1.01	1.05
0.27	τ_1	0.43	1.23	0.82	0.84	0.80	0.87	1.04

Table S10: Recovered excited-state intensity decay parameters for pyrene (10 μ M; excitation with 340 nm Nano-LED; emission collected at 373 nm) dissolved in the LiCl-added choline chloride : ethylene glycol (1 : 2) DES at varying quencher (CH₃NO₂) concentration at 358 K. Errors associated with decay times are $\leq \pm 2\%$.

	(α ₁)	(16.5)	(35.7)	(16.6)	(15.9)	(15.3)	(14.5)	(12.0)
	$ au_2$	1.91	2.45	2.92	3.64	4.20	5.31	7.58
	(a ₂)	(83.5)	(64.3)	(83.4)	(84.1)	(84.7)	(14.5)	(88.0)
	χ^2	1.17	1.08	0.85	1.04	1.20	85.52	1.04
	$ au_1$	0.57	0.45	0.35	0.91	0.62	0.52	0.71
	(α ₁)	(21.8)	(17.6)	(15.4)	(22.1)	(16.4)	(14.0)	(12.4)
0.32	$ au_2$	1.61	1.84	2.30	3.12	3.35	4.27	6.23
	(a ₂)	(78.2)	(82.4)	(84.6)	(77.9)	(83.6)	(86.0)	(87.6)
	χ^2	1.16	1.05	1.12	1.14	1.17	1.32	1.11
	τ_1	0.48	0.65	0.29	0.21	0.37	0.23	0.47
	(α ₁)	(25.9)	(25.1)	(20.0)	(18.7)	(17.1)	(17.8)	(14.8)
0.37	$ au_2$	1.42	1.57	1.95	2.37	2.80	3.49	4.83
	(a ₂)	(74.1)	(74.9)	(80.0)	(81.3)	(82.9)	(82.2)	(85.2)
	χ^2	1.14	1.08	1.02	1.10	1.14	1.20	1.19

m _{LiCl} (mol.kg ⁻¹)	^K _D (M ⁻¹)	$k_q (\mathrm{M}^{-1}.\mathrm{s}^{-1}) imes 10^8$	R^2
0.0	280.3 ± 4.5	19.00 ± 1.05	0.999
0.5	246.7 ± 4.2	16.80 ± 0.95	0.999
1.0	188.8 ± 3.1	13.10 ± 0.89	0.994
1.5	148.0 ± 2.9	10.10 ± 0.70	0.998
2.0	129.5 ± 2.8	9.10 ± 0.62	0.995
2.5	99.0 ± 2.5	7.00 ± 0.60	0.988
3.0	68.3 ± 1.5	4.90 ± 0.50	0.984

Table S11: Stern-Volmer dynamic quenching constant, K_D (M⁻¹), obtained from the linear regression analysis of τ_0/τ vs [CH₃NO₂] data and estimated bimolecular quenching rate constant k_q (M⁻¹.s⁻¹) for pyrene-nitromethane fluorophore-quencher pair in choline chloride : ethylene glycol (1 : 2) DES at different LiCl concentrations and 358 K.

	m _{LiCl}	0.0	. -	1.0		• •		• •
ICH ₂ N	(mol.kg ⁻¹)	0.0	0.5	1.0	1.5	2.0	2.5	3.0
(M)							
	$ au_1$	1.87	1.53	1.59	0.39	0.58	1.09	0.53
	(α_1)	(0.6)	(0.5)	(0.8)	(1.6)	(1.2)	(0.8)	(1.3)
0.00	τ_2	142	140	140	138	136	133	139
	(α_2)	(99.4)	(99.5)	(99.2)	(98.4)	(98.8)	(99.2)	(98.4)
	χ^2	0.99	1.01	0.97	1.06	1.06	1.02	1.04
	$ au_1$	1.88	1.91	1.82	0.62	0.69	0.49	0.68
	(α_1)	(5.6)	(5.9)	(5.3)	(5.8)	(3.5)	(4.1)	(3.6)
0.05	τ_2	17.9	20.8	28.7	30.8	38.7	47.0	52.8
	(α_2)	(94.4)	(94.1)	(94.7)	(94.2)	(96.5)	(95.9)	(96.4)
	χ^2	1.10	1.06	1.02	1.05	1.07	1.06	1.13
	τ_1	1.66	1.77	1.86	0.76	1.25	0.54	0.39
	(α_1)	(10.7)	(12.2)	(11.2)	(11.0)	(7.6)	(6.7)	(7.8)
0.11	$ au_2$	9.42	11.1	15.0	15.3	22.1	29.5	36.4
	(α_2)	(89.3)	(87.8)	(88.8)	(89.0)	(92.4)	(93.3)	(92.2)
	χ^2	1.07	1.09	1.08	1.07	1.17	1.19	1.19
	τ_1	1.45	1.52	1.50	0.71	0.78	0.27	0.11
	(α_1)	(16.6)	(18.5)	(15.3)	(14.3)	(12.4)	(13.5)	(24.9)
0.16	$ au_2$	6.12	7.57	9.47	11.2	15.3	18.9	24.3
	(α_2)	(83.4)	(81.5)	(84.7)	(85.7)	(87.6)	(86.5)	(75.1)
	χ^2	0.95	1.01	1.05	1.06	1.03	1.10	1.05
	$ au_1$	1.04	1.10	1.18	0.53	0.69	0.15	0.08
	(α_1)	(19.5)	(21.8)	(19.2)	(19.4)	(14.1)	(28.3)	(40.5)
0.21	$ au_2$	4.60	5.63	6.99	7.75	11.2	14.9	18.4
	(α_2)	(80.5)	(78.2)	(80.8)	(80.6)	(85.9)	(71.7)	(59.5)
	χ^2	0.95	1.02	1.08	1.08	1.04	0.98	1.06
0.27	τ_1	1.01	0.87	0.88	0.45	0.69	0.08	0.05

Table S12: Recovered excited-state intensity decay parameters for pyrene (10 μ M; excitation with 340 nm Nano-LED; emission collected at 373 nm) dissolved in the LiCl-added choline chloride : methyl urea (1 : 2) DES at varying quencher (CH₃NO₂) concentration at 358 K. Errors associated with decay times are $\leq \pm 2\%$.

	(α ₁)	(22.5)	(23.3)	(21.6)	(20.1)	(17.4)	(42.8)	(55.2)
	τ_2	3.58	4.39	5.63	6.13	9.48	10.8	15.0
	(α ₂)	(77.5)	(76.7)	(78.4)	(79.9)	(82.6)	(57.2)	(44.8)
	χ^2	0.99	1.04	1.13	1.10	1.12	1.12	1.02
	τ_1	0.92	0.71	0.69	0.35	0.62	0.06	0.04
	(α_1)	(25.6)	(25.8)	(23.2)	(22.1)	(19.8)	(45.2)	(60.2)
0.32	τ_2	2.91	3.71	4.67	5.01	7.77	9.08	11.7
	(a ₂)	(74.4)	(74.2)	(76.8)	(77.9)	(80.2)	(54.8)	(39.8)
	χ^2	0.98	1.05	1.10	1.07	1.10	1.05	1.13
	τ_1	0.81	0.59	0.52	0.30	0.52	0.05	0.04
	(α_1)	(29.8)	(28.6)	(25.3)	(24.3)	(21.6)	(50.1)	(62.3)
0.37	τ_2	2.46	3.21	4.03	4.20	6.23	7.88	9.93
	(a ₂)	(70.2)	(71.4)	(74.7)	(75.7)	(78.4)	(49.9)	(37.7)
	χ^2	1.00	1.03	1.08	1.08	1.13	1.20	1.10

m _{LiCl} (mol.kg ⁻¹)	^K _D (M ⁻¹)	k_q (M ⁻¹ .s ⁻¹) × 10 ⁸	R^2
0.0	146.9 ± 2.5	10.37 ± 0.91	0.995
0.5	113.7 ± 2.3	8.14 ± 0.85	0.999
1.0	89.9 ± 1.7	6.40 ± 0.76	0.996
1.5	82.1 ± 1.3	5.94 ± 0.55	0.996
2.0	52.8 ± 0.5	3.87 ± 0.54	0.990
2.5	41.4 ± 0.4	3.11 ± 0.40	0.989
3.0	30.3 ± 0.4	2.19 ± 0.45	0.996

Table S13: Stern-Volmer dynamic quenching constant, K_D (M⁻¹), obtained from the linear regression analysis of τ_0/τ vs [CH₃NO₂] data and estimated bimolecular quenching rate constant k_q (M⁻¹.s⁻¹) for pyrene-nitromethane fluorophore-quencher pair in choline chloride : methyl urea (1 : 2) DES at different LiCl concentrations and 358 K.

(1 [CH ₃ NO (M)	m _{LiCl} mol.kg ⁻¹) 2]	0.0	0.5	1.0	1.5	2.0	2.5	3.0
	τ ₁	1.13	44.5	44.8	1.14			
	(α ₁)	(0.4)	(0.3)	(1.5)	(0.9)			
0.00	$ au_2$	94.0	105	111	114			
	(a ₂)	(99.6)	(99.7)	(98.5)	(99.1)			
	χ^2	1.00	1.04	1.03	0.98			
	τ_1	1.01	1.07	1.47	1.01			
	(α 1)	(6.6)	(4.7)	(7.1)	(10.5)			
0.05	$ au_2$	7.42	8.23	9.99	9.90			
	(a ₂)	(93.4)	(95.3)	(92.9)	(89.5)			
	χ^2	1.02	1.12	1.02	1.00			
	$ au_1$	0.87	0.89	0.95	0.74			
	(α 1)	(11.1)	(10.9)	(13.2)	(19.4)			
0.11	$ au_2$	3.64	4.27	4.36	4.94	Lic	'l is not sol	uhle
	(a ₂)	(88.9)	(89.1)	(86.8)	(80.6)	LIC	1 15 1101 501	uoic
	χ^2	0.87	0.86	1.09	0.94			
	$ au_1$	0.55	0.90	0.37	0.57			
	(α 1)	(13.5)	(20.7)	(14.5)	(25.5)			
0.16	$ au_2$	2.44	2.93	2.80	3.19			
	(a ₂)	(86.5)	(79.3)	(85.5)	(74.5)			
	χ^2	0.94	0.89	1.02	0.86			
	$ au_1$	0.54	0.45	0.38	0.56			
	(α 1)	(21.3)	(20.3)	(23.2)	(34.5)			
0.21	$ au_2$	1.83	2.07	2.14	2.51			
	(a ₂)	(78.7)	(79.7)	(76.8)	(65.5)			
	χ^2	1.02	1.01	0.97	0.85			
0.27	$ au_1$	0.49	0.31	0.48	0.36			

Table S14: Recovered excited-state intensity decay parameters for pyrene (10 μ M; excitation with 340 nm Nano-LED; emission collected at 373 nm) dissolved in the LiCl-added choline chloride : phenol (1 : 2) DES at varying quencher (CH₃NO₂) concentration at 358 K. Errors associated with decay times are $\leq \pm 2\%$.

	(a ₁)	(29.8)	(25.7)	(32.4)	(34.9)
	$ au_2$	1.51	1.62	1.72	1.87
	(a ₂)	(70.2)	(74.3)	(67.6)	(65.1)
	χ^2	1.00	0.99	0.97	1.04
	$ au_1$	0.42	0.25	0.42	0.25
	(a ₁)	(32.8)	(29.7)	(40.1)	(37.8)
0.32	$ au_2$	1.26	1.34	1.41	1.53
	(a ₂)	(67.2)	(70.3)	(59.9)	(62.2)
	χ^2	1.01	1.02	1.00	1.01
	$ au_1$	0.35	0.19	0.37	0.17
	(α 1)	(35.1)	(33.7)	(48.3)	(50.2)
0.37	$ au_2$	1.07	1.14	1.19	1.27
	(a ₂)	(64.9)	(66.3)	(51.7)	(49.8)
	χ^2	1.05	0.98	0.99	1.03

Table S15: Stern-Volmer dynamic quenching constant, K_D (M⁻¹), obtained from the linear regression analysis of τ_0/τ vs [CH₃NO₂] data and estimated bimolecular quenching rate constant k_q (M⁻¹.s⁻¹) for pyrene-nitromethane fluorophore-quencher pair in choline chloride : phenol (1 : 2) DES at different LiCl concentrations and 358 K.

m _{LiCl} (mol.kg ⁻¹)	^K _D (M ⁻¹)	k_q (M ⁻¹ .s ⁻¹) × 10 ⁸	R^2
0.0	232.4 ± 4.1	24.70 ± 1.04	0.999
0.5	239.3 ± 4.3	22.70 ± 1.03	0.996
1.0	241.8 ± 5.2	21.20 ± 1.02	0.997
1.5	227.8 ± 4.5	19.90 ± 1.06	0.993

Table S16: Recovered anisotropy decay parameters for perylene (5 μ M; excitation with 405 nm Nano-LED; emission collected at 445 nm) dissolved in the LiCl-added Glyceline system at different temperatures and LiCl concentrations.

$\frac{m_{LiCl}}{(\text{mol.}kg^{-1})}$	r ₀	θ (ns)	x ²
0.0	$0.287 \pm 0.000_2$	5.17 ± 0.03	1.20
0.5	$0.298 \pm 0.001_1$	7.51 ± 0.02	1.32
1.0	$0.311 \pm 0.001_2$	9.67 ± 0.02	1.16
1.5	$0.315 \pm 0.000_9$	$13.0\pm0.0_{5}$	1.16
2.0	$0.320 \pm 0.001_1$	$17.5\pm0.0_{4}$	1.22
2.5	$0.326 \pm 0.000_8$	$26.6\pm0.0_5$	1.13
3.0	$0.329 \pm 0.001_3$	$37.6 \pm \mathbf{0.0_4}$	1.15

T(K) = 298

<i>T</i> (K)	=	3	1	3
--------------	---	---	---	---

m_{LiCl} (mol. kg^{-1})	r_0	θ (ns)	χ^2
0.0	$0.269 \pm 0.000_3$	2.48 ± 0.01	1.25
0.5	$0.274 \pm 0.000_2$	3.38 ± 0.02	1.28
1.0	$0.284 \pm 0.001_2$	4.67 ± 0.02	1.34
1.5	$0.289 \pm 0.000_8$	6.56 ± 0.03	1.35
2.0	$0.294 \pm 0.000_5$	8.78 ± 0.02	1.21
2.5	$0.307 \pm 0.001_4$	$11.8\pm0.0_{4}$	1.20
3.0	$0.311 \pm 0.001_1$	$16.7\pm0.0_{3}$	1.23

T (K) =328

m_{LiCl} (mol. kg^{-1})	r_0	θ (ns)	χ^2
0.0	$0.245 \pm 0.001_3$	1.39 ± 0.04	1.24
0.5	$0.252 \pm 0.000_2$	1.82 ± 0.03	1.29
1.0	$0.253 \pm 0.001_2$	2.56 ± 0.01	1.23
1.5	$0.266 \pm 0.000_5$	3.19 ± 0.02	1.30

2.0	$0.273 \pm 0.000_7$	4.00 ± 0.04	1.39
2.5	$0.286 \pm 0.000_4$	5.73 ± 0.04	1.31
3.0	$0.287 \pm 0.000_2$	7.41 ± 0.05	1.22

T(K) = 343

m_{LiCl} (mol. kg^{-1})	r ₀	θ (ns)	χ^2
0.0	$0.237 \pm 0.001_1$	0.84 ± 0.02	1.15
0.5	$0.241 \pm 0.001_2$	1.07 ± 0.04	1.21
1.0	$0.229 \pm 0.000_8$	1.39 ± 0.03	1.22
1.5	$0.243 \pm 0.001_3$	1.84 ± 0.03	1.34
2.0	$0.246 \pm 0.000_9$	2.37 ± 0.04	1.33
2.5	$0.269 \pm 0.001_5$	3.10 ± 0.05	1.33
3.0	$0.269 \pm 0.000_3$	4.44 ± 0.02	1.46

T(K) = 358

m_{LiCl} (mol. kg^{-1})	r_0	θ (ns)	χ^2
0.0	$0.195 \pm 0.001_2$	0.56 ± 0.02	1.12
0.5	$0.215 \pm 0.001_0$	0.62 ± 0.04	1.11
1.0	$0.222 \pm 0.000_8$	0.85 ± 0.03	1.09
1.5	$0.236 \pm 0.001_1$	1.03 ± 0.02	1.14
2.0	$0.238 \pm 0.000_7$	1.35 ± 0.05	1.21
2.5	$0.230 \pm 0.000_5$	1.90 ± 0.05	1.20
3.0	$0.247 \pm 0.001_5$	2.32 ± 0.04	1.27

<i>m</i>	Slope × 10 ⁻⁹	D 2
m _{LiCl}	(ns.K.mPa ⁻¹)	R ²
0.0	4.18 ± 0.15	0.956
0.5	3.41 ± 0.20	0.968
1.0	2.40 ± 0.13	0.924
1.5	1.75 ± 0.12	0.896
2.0	2.15 ± 0.16	0.934
2.5	1.71 ± 0.14	0.895
3.0	1.97 ± 0.15	0.735

Table S17: Linear regression analysis of θ (ns) of perylene vs η/T data of LiCl-added Glyceline.

Fig. S1: Plot of ln $(1/\tau_0)$ vs 1/T for pyrene in LiCl-added Glyceline with the inset showing corresponding activation energies for radiative transition $({}^{E_{a,rad}})$ for different LiCl concentrations.