Supporting information

Phase relations, thermal conductivity and elastic properties of

 ZrO_2 and HfO_2 polymorphs at high pressures and temperatures

Dinara N. Sagatova ^{*1,2}, Nursultan E. Sagatov^{2,3}, Pavel N. Gavryushkin^{2,3}, and Sergey F. Solodovnikov¹

¹Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russian Federation
²Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
³Novosibirsk State University, Novosibirsk, Russian Federation

^{*}Electronic address:sagatovadn@igm.nsc.ru; Corresponding author

Figure S1: Phonon spectra of low-pressure modifications of ZrO_2 and HfO_2 at 0 GPa.

Figure S2: Phonon spectra of high-pressure modifications of ZrO₂.

Figure S3: Phonon spectra of high-pressure modifications of HfO₂.

P (GPa)	B (GPa)	G (GPa)	ν	E (GPa)	B/G	H^V_{Chen} (GPa)	H_{Tian}^V (GPa)
0	185	86	0.30	223	2.16	8.0	9.0
3	182	88	0.29	227	2.08	8.6	9.5
7	168	92	0.27	235	1.82	11.0	11.5
7	229	108	0.30	280	2.12	9.8	10.8
10	237	110	0.30	286	2.16	9.7	10.7
14	246	112	0.30	292	2.20	9.6	10.6
14	295	117	0.33	309	2.53	7.9	9.3
20	324	128	0.33	339	2.53	8.5	10.0
40	409	160	0.33	424	2.56	10.0	11.5
60	486	186	0.33	494	2.62	10.8	12.5
80	559	208	0.33	555	2.69	11.3	13.1
100	630	228	0.34	609	2.77	11.5	13.5
120	698	245	0.34	658	2.85	11.6	13.7
140	765	260	0.35	701	2.94	11.6	13.8
140	778	288	0.34	770	2.70	14.2	16.4
150	812	297	0.34	793	2.74	14.2	16.5
160	845	304	0.34	815	2.78	14.2	16.5

Table S1: Calculated bulk modulus (B), shear modulus (G), Poisson's ratio (ν), Young's modulus (E), the B/G ratio, and hardness (H_V) of ZrO₂ depended on pressure.

P (GPa)	B (GPa)	G (GPa)	ν	E (GPa)	B/G	H^V_{Chen} (GPa)	H_{Tian}^V (GPa)
0	202	98	0.29	253	2.05	9.6	10.4
5	197	102	0.28	261	1.93	10.9	11.5
10	193	107	0.27	271	1.80	12.4	12.9
8	252	122	0.29	315	2.07	11.2	12.1
12	264	125	0.30	323	2.12	11.0	11.9
16	275	127	0.30	330	2.17	10.8	11.8
20	284	128	0.30	335	2.21	10.5	11.6
15	315	127	0.32	335	2.49	8.7	10.1
30	385	154	0.32	408	2.50	10.1	11.5
45	447	177	0.32	470	2.52	11.0	12.6
60	506	198	0.33	525	2.56	11.7	13.3
75	563	216	0.33	574	2.61	12.1	13.9
90	618	232	0.33	619	2.66	12.4	14.3
105	672	247	0.34	660	2.72	12.6	14.6
120	726	261	0.34	698	2.78	12.6	14.8
135	778	273	0.34	734	2.85	12.7	14.9
125	754	295	0.33	783	2.56	15.6	17.7
140	807	309	0.33	821	2.62	15.6	17.8
155	859	321	0.33	857	2.67	15.5	17.9

Table S2: Calculated bulk modulus (B), shear modulus (G), Poisson's ratio (ν), Young's modulus (E), the B/G ratio, and hardness (H_V) of HfO₂ depended on pressure.

		ZrO_2 - P	$2_1/c, 0 \in$	Pa		
Parameter		Theory		Exp	periment	t [1]
a (Å)		5.191			5.147	
<i>b</i> (Å)		5.244			5.209	
c (Å)		5.379			5.317	
Atoms	x	y	z	x	y	z
Zr	0.275	0.543	0.710	0.275	0.040	0.209
01	0.065	0.827	0.849	0.069	0.332	0.344
O2	0.451	0.256	-0.024	0.450	0.756	0.478
		HfO^2 - P	$2_1/c, 0 \in$	Pa		
Parameter		Theory		Exp	periment	t [2]
$\begin{tabular}{c} \hline Parameter \\ \hline a (Å) \end{tabular}$		Theory 5.191		Exj	periment 5.150	t [2]
Parameter a (Å) b (Å)		Theory 5.191 5.244		Exp	periment 5.150 5.185	t [2]
$\begin{tabular}{c} \hline Parameter \\ \hline a (Å) \\ b (Å) \\ c (Å) \\ \hline \end{tabular}$		Theory 5.191 5.244 5.379		Exp	5.150 5.185 5.342	t [2]
Parameter a (Å) b (Å) c (Å) Atoms	<i>x</i>	Theory 5.191 5.244 5.379 <i>y</i>		Exp	5.150 5.185 5.342 y	t [2]
Parameter a (Å) b (Å) c (Å) Atoms Hf1	x 0.275	Theory 5.191 5.244 5.379 <i>y</i> 0.543	z 0.710	Exp x 0.280		t [2] z 0.217
Parameter a (Å) b (Å) c (Å) Atoms Hf1 O1	x 0.275 0.065	Theory 5.191 5.244 5.379 <i>y</i> 0.543 0.827	<i>z</i> 0.710 0.849	Exp x 0.280 0.069	5.150 5.185 5.342 y 0.049 0.326	t [2] z 0.217 0.343

Table S3: Comparison of calculated lattice constants of ZrO_2 - $P2_1/c$ and HfO_2 - $P2_1/c$ with experimental data.

	Z	rO_2 - $P4_2$	/nmc, 0	GPa		
Parameter		Theory		Exp	periment	t [3]
a (Å)		3.622			3.578	
<i>b</i> (Å)		3.622			3.578	
c (Å)		5.279			5.162	
Atoms	x	y	z	x	y	z
Zr1	0.750	0.250	0.250	0.000	0.000	0.000
01	0.250	0.250	-0.056	0.000	0.500	0.048
	Н	$fO_2 - P4_2$	nmc, 0	GPa		
Parameter	Н	$fO_2 - P4_2$ Theory	/ <i>nmc</i> , 0	GPa Exj	periment	t [4]
Parameter a (Å)	Η	fO_2 - $P4_2$ Theory 3.594	/ <i>nmc</i> , 0	GPa Exp	periment 3.593	t [4]
Parameter a (Å) b (Å)	H	fO_2 - $P4_2$ Theory 3.594 3.594	/ <i>nmc</i> , 0	GPa Exp	periment 3.593 3.593	t [4]
Parameter a (Å) b (Å) c (Å)	H	fO_2 - $P4_2$ Theory 3.594 3.594 5.229	./nmc, 0	GPa Exp	periment 3.593 3.593 5.225	t [4]
Parameter a (Å) b (Å) c (Å) Atoms	H	$fO_2 - P4_2$ Theory 3.594 3.594 5.229 y	<i>z</i>	GPa Exp	2.593 3.593 3.593 5.225 y	t [4]
Parameter a (Å) b (Å) c (Å) Atoms Hf1	H x 0.750	$fO_2 - P4_2$ Theory 3.594 3.594 5.229 y 0.250	<i>z</i> 0.250	GPa Exp x 0.000	2.593 3.593 3.593 5.225 <i>y</i> 0.000	t [4]

Table S4: Comparison of calculated lattice constants of ZrO_2-P4_2/nmc and HfO_2-P4_2/nmc with experimental data.

ZrO_2 - $Fm\overline{3}m$, 0 GPa						
Parameter		Theory		Exp	periment	[5]
a (Å)		5.118			5.090	
Atoms	x	y	z	x	y	z
Zr1	0.000	0.000	0.000	0.000	0.000	0.000
O1	0.250	0.250	0.250	0.250	0.250	0.250
	H	HO_2 - Fn	$n\bar{3}m, 0$ (GPa		
Parameter		Theory		Exp	periment	[6]
a (Å)		5.080			5.115	
Atoms	x	y	z	x	y	z
Hf1	0.000	0.000	0.000	0.000	0.000	0.000
01	0.250	0.250	0.250	0.250	0.250	0.250

Table S5: Comparison of calculated lattice constants of ZrO_2 - $Fm\bar{3}m$ and HfO_2 - $Fm\bar{3}m$ with experimental data.

		ZrO_2 - Pl	bca, 0 G	Pa		
Parameter		Theory		Exp	periment	t [7]
a (Å)		10.054			10.086	
b (Å)		5.261			5.261	
c (Å)		5.078			5.091	
Atoms	x	y	z	x	y	z
Zr1	0.884	0.034	0.253	0.884	0.032	0.256
01	0.791	0.377	0.131	0.791	0.371	0.131
O2	-0.023	0.738	0.497	0.978	0.748	0.495
		HfO ₂ -Pi	bca, 0 G	Pa		
Parameter		Theory		Exp	periment	t [8]
a (Å)		10.068			10.017	
<i>b</i> (Å)		5.252			5.228	
c (Å)		5.089			5.060	
Atoms						
	x	y	z	x	y	z
Hf1	x 0.884	y 0.036	z 0.254	x 0.884	y 0.034	z 0.253
Hf1 O1	x 0.884 0.789	y 0.036 0.372	z 0.254 0.124	x 0.884 0.796	y 0.034 0.380	z 0.253 0.138

Table S6: Comparison of calculated lattice constants of ZrO_2 -*Pbca* and HfO_2 -*Pbca* with experimental data.

		ZrO_2 - Pr	nma, 0 G	Pa		
Parameter		Theory		Exp	periment	t [9]
a (Å)		5.601			5.587	
b (Å)		3.375			6.485	
c (Å)		6.550			3.330	
Atoms	x	y	z	x	y	z
Zr1	0.249	0.250	0.107	0.246	0.111	0.250
O1	0.361	0.250	0.423	0.360	0.425	0.250
O2	-0.021	0.250	0.658	0.025	0.339	0.750
]	HfO_2 - Pr	nma, 0 G	Pa		
Parameter		Theory		Exp	periment	t [9]
$\frac{\text{Parameter}}{a \text{ (Å)}}$		Theory 5.560		Exp	periment 5.554	t [9]
Parameter a (Å) b (Å)		Theory 5.560 3.335		Exp	periment 5.554 6.457	t [9]
Parameter a (Å) b (Å) c (Å)		Theory 5.560 3.335 6.514		Exp	5.554 5.457 6.457 3.307	t [9]
Parameter a (Å) b (Å) c (Å) Atoms	x	Theory 5.560 3.335 6.514 <i>y</i>	2	Exp	$\frac{5.554}{6.457}$ $\frac{3.307}{y}$	t [9]
Parameter a (Å) b (Å) c (Å) Atoms Hf1	x 0.751	Theory 5.560 3.335 6.514 <i>y</i> 0.250	<i>z</i> 0.892	Exp x 0.246		z 0.250
Parameter a (Å) b (Å) c (Å) Atoms Hf1 O1	x 0.751 0.020	Theory 5.560 3.335 6.514 <i>y</i> 0.250 0.250	z 0.892 0.341	Exp x 0.246 0.359		z 0.250 0.250

Table S7: Comparison of calculated lattice constants of ZrO_2 -Pnma and HfO_2 -Pnma with experimental data.

ZrO_2 - $P\overline{6}2m$, 150 GPa						
Parameter	Theory	Experiment [10]				
a (Å)	5.139	5.134				
b (Å)	5.139	5.134				
c (Å)	2.951	2.950				
	HfO ₂ -P	$\overline{6}2m$				
Parameter	Theory (150 GPa)	Experiment (177 GPa) $[11]$				
a (Å)	5.131	5.074				
b (Å)	5.131	5.074				
c (Å)	2.925	2.899				

Table S8: Comparison of calculated lattice constants of $ZrO_2 - P\bar{6}2m$ and $HfO_2 - P\bar{6}2m$ with experimental data.

Figure S4: Pressure-dependence of B, G, ν , and E for ZrO_2 polymorphs.

Figure S5: Pressure-dependence of B, G, ν , and E for HfO₂ polymorphs.

References

- H. Fukui, M. Fujimoto, Y. Akahama, A. Sano-Furukawa, T. Hattori, Structure change of monoclinic ZrO₂ baddeleyite involving softenings of bulk modulus and atom vibrations, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 75 (4) (2019) 742–749.
- [2] S. J. Henderson, O. Shebanova, A. L. Hector, P. F. McMillan, M. T. Weller, Structural variations in pyrochlore-structured Bi₂Hf₂O₇, Bi₂Ti₂O₇ and Bi₂Hf_{2-x}Ti_xO₇ solid solutions as a function of

composition and temperature by neutron and X-ray diffraction and raman spectroscopy, Chemistry of Materials 19 (7) (2007) 1712–1722.

- [3] P. Bouvier, E. Djurado, C. Ritter, A. Dianoux, G. Lucazeau, Low temperature phase transformation of nanocrystalline tetragonal ZrO₂ by neutron and raman scattering studies, International Journal of Inorganic Materials 3 (7) (2001) 647–654.
- [4] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. a. Persson, The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials 1 (1) (2013) 011002.
- [5] G. Katz, X-ray diffraction powder pattern of metastable cubic ZrO₂, Journal of the American Ceramic Society 54 (10) (1971) 531–531.
- [6] R. W. G. Wyckoff, R. W. Wyckoff, Crystal structures, Vol. 1, Interscience publishers New York, 1963.
- [7] O. Ohtaka, T. Yamanaka, S. Kume, N. Hara, H. Asano, F. Izumi, Structural analysis of orthorhombic ZrO₂ by high resolution neutron powder diffraction, Proceedings of the Japan Academy, Series B 66 (10) (1990) 193–196.
- [8] O. OHTAKA, T. YAMANAKA, S. KUME, Synthesis and X-ray structural analysis by the Rietveld method of orthorhombic hafnia, Journal of the Ceramic Society of Japan 99 (1153) (1991) 826–827.
- [9] J. Haines, J. M. Léger, S. Hull, J. P. Petitet, A. S. Pereira, C. A. Perottoni, J. A. da Jornada, Characterization of the cotunnite-type phases of zirconia and hafnia by neutron diffraction and Raman spectroscopy, Journal of the American Ceramic Society 80 (7) (1997) 1910–1914.
- [10] D. Nishio-Hamane, H. Dekura, Y. Seto, T. Yagi, Theoretical and experimental evidence for the postcotunnite phase transition in zirconia at high pressure, Physics and Chemistry of Minerals 42 (2015) 385–392.
- [11] R. Dutta, B. Kiefer, E. Greenberg, V. B. Prakapenka, T. S. Duffy, Ultrahigh-pressure behavior of AO₂ (A= Sn, Pb, Hf) compounds, The Journal of Physical Chemistry C 123 (45) (2019) 27735–27741.