Supplementary Material for

Interplays between Transition-Metal K-edge XMCD, slight structural distortion and magnetism in a series of trimetallic Co_xNi_(1-x)Fe Prussian Blue Analogs.

Adama N'Diaye,^b Amélie Bordage,^a Lucie Nataf,^b François Baudelet,^b Eric Rivière^a and Anne Bleuzen^{*a}

^a Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France ^b Synchrotron SOLEIL, L'Orme des Merisiers, St Aubin, BP 48, 91192 Gif sur Yvette, France.

Electronic Supplementary Information

S1. X-ray diffraction patterns, cell parameters and EDS analyses of NiFe, Ni₇₅Co₂₅Fe, Ni₅₀Co₅₀Fe and Ni₂₅Co₇₅Fe.

S2. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization curves for NiFe, Ni₇₅Co₂₅Fe, Ni₅₀Co₅₀Fe and Ni₂₅Co₇₅Fe.

S3. Temperature dependence of the inverse of the magnetic molar susceptibilities for NiFe, Ni₇₅Co₂₅Fe, Ni₅₀Co₅₀Fe and Ni₂₅Co₇₅Fe.

S4. Variation of the lattice constant value with the Co% along the $Co_xNi_{(1-x)}Fe$ series.

S5. Variation of the Curie-Weiss temperature (θ) with x (the mole fraction of Co ions at the A site).

S6. X-ray diffraction pattern of NiCr_{0.50}Fe_{0.50}.

S7. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization curves for NiCr_{0.50}Fe_{0.50}.

S8. Magnetic field dependance of the magnetization at 4 K of $NiCr_{0.50}Fe_{0.50}$.

S1. X-ray diffraction patterns, cell parameters and EDS analyses of **CoFe**, **Co**_{0.7}**Ni**_{0.3}**Fe**, **Co**_{0.56}**Ni**_{0.44}**Fe**, **Co**_{0.35}**Ni**_{0.65}**Fe** and **NiFe**.

X-ray diffraction patterns were recorded using a Phillips PAN X-Pert PRO MPD X-ray diffractometer (Cu K α_1 ; λ = 1.5418 Å). An aluminum sample holder was used.

All X-ray diffraction patterns exhibit the peaks of the well-known fcc structure of the PBAs. The cell parameters for the four PBAs are :

NiFe :	a = 10.204±0.001 Å
Co _{0.35} Ni _{0.65} Fe :	a = 10.25685±0.0004 Å
Co _{0.56} Ni _{0.44} Fe :	a = 10.2607±0.0004 Å
Co _{0.7} Ni _{0.3} Fe :	a = 10.2701±0.0004 Å
CoFe :	a = 10.286±0.001 Å

The EDS analyses were used to determine the chemical formula of the trimetallic compounds. The results are given in the following table. The results for **NiFe** (Ni_4 [Fe(CN)₆]_{2.7}•17H₂O) and **CoFe** (Co_4 [Fe(CN)₆]_{2.7}•17H₂O) were given in ref. 37.

Sample	Co _{0.35} Ni _{0.65} Fe	Co _{0.56} Ni _{0.44} Fe	Co _{0.7} Ni _{0.3} Fe
Co:Ni:Fe Atomic%	21.67 : 39.57 : 38.76	33.53 : 26.88 : 39.59	39.31 : 14.47 : 46.22
Proposed chemical formula	(Ni0.65C00.35)4[Fe(CN)6]2.5•17H2O	(Ni0.44Co0.56)4[Fe(CN)6]2.6•17H2O	(Ni0.3C00.70)4[Fe(CN)6]2.73•17H2O

S2. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization curves for CoFe, Co_{0.7}Ni_{0.3}Fe, Co_{0.56}Ni_{0.44}Fe, Co_{0.35}Ni_{0.65}Fe and NiFe.

The inset of each figure presents the derivative of the magnetization versus temperature, used for the determination of the magnetic ordering temperature $T_{C/N}$ (which is the minimum of each curve).

S3. Temperature dependence of the inverse of the magnetic molar susceptibilities for **CoFe**, **Co**_{0.7}**Ni**_{0.3}**Fe**, **Co**_{0.56}**Ni**_{0.44}**Fe**, **Co**_{0.35}**Ni**_{0.65}**Fe** and **NiFe**.

The curves were reproduced on the linear part in the appropriate high temperature range by a Curie-Weiss law :

$$\chi = \frac{C_{PBA}}{T - \theta}$$

where χ is the molar magnetic susceptibility, C_{PBA} the Curie constant, T the temperature and θ the Weiss constant.

S4. Variation of the lattice constant value with the Co% along the $Co_xNi_{(1-x)}Fe$ series.

S5. Variation of the Curie-Weiss temperature (θ) with x (the mole fraction of Co ions at the A site).

S6. X-ray diffraction pattern of $NiCr_{0.50}Fe_{0.50}$.

S7. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization curves for NiCr_{0.50}Fe_{0.50}.

S8. Magnetic field dependance of the magnetization at 4 K of $NiCr_{0.50}Fe_{0.50}$.

