Supplementary Information for:

Exploring the stability and aromaticity of rare earth doped tin cluster MSn_{16} (M = Sc, Y, La)

Jin-Kun Zeng¹, Huai-Qian Wang^{1,2,*}, Hui-Fang Li², Hao Zheng¹, Jia-Ming Zhang¹, Xun-Jie Mei², Yong-Hang Zhang¹ and Xun-Lei Ding³

¹College of Information Science and Engineering, Huaqiao University, Xiamen, 361021, China.

²College of engineering, Huaqiao University, Quanzhou, 362021, China.

³Department of Mathematics and Physics, North China Electric Power University, Beijing, 102206, China

*Corresponding authors: E-mail: hqwang@hqu.edu.cn (HQW)

Table of Contents

Table S1. Calculated relative energy and HOMO-LUMO gaps of MSn_{16}^- (M = Sc, Y, La) clusters obtained by using Scalar (SR) and Spin Orbit (SO) approach as obtained at PBE0/Sc/def2- TZVP//Y/dhf-TZVP-2c//La/ECP28WMB//Sn/dhf-TZVP-2c level. (All energies are in eV).

Page 3

Table S2. The relative energy of a few low-lying energy isomers of MSn_{16}^{--} (M = Sc, Y, La) obtained at five different methods.

Page 4

Table S3. Calculated Cartesian coordinates for the low-lying energy isomers of MSn_{16}^{-} (M = Sc, Y, La)clusters at PBE0/def2-TZVP level.

Page 5~ Page 11

 Table S4. The root-mean-square deviation (RMSD) between experimental and simulated PES (X, A, B, C in eV).

Page 12

Figure S1 Comparing the Experimental and simulated PES of Sn₁₆⁻. Comparison of two possible low-

2

lying isomers with experimental PES. The structure and experimental PES are extracted from ref. [S1, S2]. The relative energy is carried out at the PBE0/Lanl08(d) level. The positions of the first four peaks in the experiment are marked with the letters X, A, B, and C.

Figure S2. Valence molecular orbitals diagram of $ScSn_{16}$.

Figure S3. AdNDP orbits of (a) YSn_{16}^- ; (b) $LaSn_{16}^-$.

Figure S4. ICSS curve plot along the Z-axis from the center of the (a) Sc; (b) Y; (c) La atom.

Supplemental References

Page 17

Page 16

Page 14

Page 13

Page 15

Table S1. Calculated relative energy and HOMO-LUMO gaps of MSn_{16}^{-} (M = Sc, Y, La) clust	ters
obtained by using Scalar (SR) and Spin Orbit (SO) approach as obtained at PBE0/Sc/def2-TZVP//Y/c	lhf-
TZVP-2c//La/ECP28WMB//Sn/dhf-TZVP-2c level. (All energies are in eV)	

Classic	SO		SR	
Clusters	ΔΕ	Gap	ΔΕ	Gap
ScSn_{16}^{-} -I	0.00	2.39	0.00	2.52
ScSn_{16}^{-} -II	0.79	1.73	0.82	1.65
$ScSn_{16}^{-}$ -III	1.28	2.16	1.27	2.21
YSn_{16}^{-} -I	0.00	2.48	0.00	2.61
YSn_{16}^{-} -II	0.66	1.79	0.69	1.71
YSn_{16}^{-} -III	1.41	2.14	1.40	2.23
$LaSn_{16}^{-}$ -I	0.00	2.49	0.00	2.63
LaSn ₁₆ ⁻ -II	0.76	1.83	0.79	1.75
LaSn ₁₆ ⁻ -III	1.80	2.06	1.79	2.16

Clusters	PBE0	PBE	B3PW91	B3LYP	DLPNO-CCSD(T)
$ScSn_{16}^{-}$ - I	0.00	0.00	0.00	0.00	0.00
$ScSn_{16}^{-}$ - II	0.82	0.70	0.73	0.51	0.70
$ScSn_{16}^{-}$ - III	1.27	1.17	1.18	0.95	1.15
$\mathrm{YSn_{16}}^-$ - I	0.00	0.00	0.00	0.00	0.00
$\mathrm{YSn_{16}}^-$ - II	0.70	0.57	0.61	0.38	0.64
$\mathrm{YSn_{16}}^-$ - III	1.41	1.28	1.31	1.08	1.37
$LaSn_{16}^{-}$ - I	0.00	0.00	0.00	0.00	0.00
LaSn ₁₆ ⁻ - II	0.77	0.48	0.60	0.14	0.85
$LaSn_{16}^{-}$ - III	1.79	1.46	1.61	1.13	1.84

Table S2. The relative energy of a few low-lying energy isomers of MSn_{16}^{-} (M = Sc, Y, La) obtained at five different methods.

Table S3. Calculated Cartesian coordinates for the low-lying energy isomers of MSn_{16}^{-} (M = Sc, Y, La)clusters at PBE0/def2-TZVP level.

ScSn_{16}^{-} -1				
Element	Х	Y	Z	
Sn	1.028905	3.143169	1.028905	
Sn	1.822917	-1.822917	1.822917	
Sn	-1.028905	-3.143169	1.028905	
Sn	1.028905	1.028905	3.143169	
Sn	3.143169	1.028905	1.028905	
Sn	1.028905	-1.028905	-3.143169	
Sn	-3.143169	1.028905	-1.028905	
Sn	-1.028905	3.143169	-1.028905	
Sn	1.028905	-3.143169	-1.028905	
Sn	-1.028905	1.028905	-3.143169	
Sn	-1.028905	-1.028905	3.143169	
Sn	3.143169	-1.028905	-1.028905	
Sn	-3.143169	-1.028905	1.028905	
Sn	-1.822917	1.822917	1.822917	
Sn	1.822917	1.822917	-1.822917	
Sn	-1.822917	-1.822917	-1.822917	
Sc	0.000000	0.000000	0.000000	

Element	Х	Y	Z
Sn	-1.460383	1.852343	2.321779
Sn	0.000000	2.136837	-2.403457
Sn	-1.460383	-1.852343	2.321779
Sn	0.000000	-2.136837	-2.403457

 $ScSn_{16}^{-}$ -II

Sn	-2.267435	0.000000	-2.355253
Sn	-3.341521	0.000000	0.912027
Sn	1.460383	1.852343	2.321779
Sn	2.469987	-2.440464	-0.593742
Sc	0.000000	0.000000	0.109931
Sn	-2.469987	2.440464	-0.593742
Sn	-2.469987	-2.440464	-0.593742
Sn	1.460383	-1.852343	2.321779
Sn	2.469987	2.440464	-0.593742
Sn	0.000000	-3.864515	0.367523
Sn	0.000000	3.864515	0.367523
Sn	2.267435	0.000000	-2.355253
Sn	3.341521	0.000000	0.912027

 $ScSn_{16}^{-}$ -III

Element	Х	Y	Z
Sn	-2.243036	-1.711650	1.872985
Sn	2.533327	-0.344711	2.243410
Sn	-2.554669	1.236375	1.515221
Sn	0.560488	-2.523813	-2.680884
Sn	-0.579463	-3.510914	0.000000
Sn	-1.303488	3.527773	0.000000
Sn	1.587217	4.512647	0.000000
Sn	1.070698	2.066382	-1.487442
Sn	-0.390851	0.267113	3.454671
Sn	-2.554669	1.236375	-1.515221
Sn	0.560488	-2.523813	2.680884
Sn	-2.243036	-1.711650	-1.872985
Sn	-0.390851	0.267113	-3.454671

Sn	1.070698	2.066382	1.487442
Sn	2.533327	-0.344711	-2.243410
Sn	2.357233	-2.377692	0.000000
Sc	-0.031935	-0.312397	0.000000

Element	Х	Y	Z
Sn	1.035402	3.160370	1.035402
Sn	1.861908	-1.861908	1.861908
Sn	-1.035402	-3.160370	1.035402
Sn	1.035402	1.035402	3.160370
Sn	3.160370	1.035402	1.035402
Sn	1.035402	-1.035402	-3.160370
Sn	-3.160370	1.035402	-1.035402
Sn	-1.035402	3.160370	-1.035402
Sn	1.035402	-3.160370	-1.035402
Sn	-1.035402	1.035402	-3.160370
Sn	-1.035402	-1.035402	3.160370
Sn	3.160370	-1.035402	-1.035402
Sn	-3.160370	-1.035402	1.035402
Sn	-1.861908	1.861908	1.861908
Sn	1.861908	1.861908	-1.861908
Sn	-1.861908	-1.861908	-1.861908
Y	0.000000	0.000000	0.000000

 $YSn_{16}^{-}\text{-}I$

YSn ₁	6 ⁻ -II
1 DII	0 11

Element	X	Y	Z
---------	---	---	---

Sn	-1.479706	1.951512	2.344812
Sn	0.000000	2.152954	-2.442461
Sn	-1.479706	-1.951512	2.344812
Sn	0.000000	-2.152954	-2.442461
Sn	-2.309605	0.000000	-2.373459
Sn	-3.328427	0.000000	0.975503
Sn	1.479706	1.951512	2.344812
Sn	2.496116	-2.446092	-0.603888
Y	0.000000	0.000000	0.118930
Sn	-2.496116	2.446092	-0.603888
Sn	-2.496116	-2.446092	-0.603888
Sn	1.479706	-1.951512	2.344812
Sn	2.496116	2.446092	-0.603888
Sn	0.000000	-3.869623	0.312185
Sn	0.000000	3.869623	0.312185
Sn	2.309605	0.000000	-2.373459
Sn	3.328427	0.000000	0.975503

YSn₁₆⁻-III

Element	Х	Y	Z
Sn	-2.176739	-1.802533	2.046572
Sn	2.592632	-0.265420	2.193413
Sn	-2.733573	1.086678	1.526305
Sn	0.678317	-2.474880	-2.697718
Sn	-0.58632	-3.50626	0.000000
Sn	-1.378072	3.299787	0.000000
Sn	1.357279	4.666933	0.000000
Sn	1.145578	2.189516	-1.511245
Sn	-0.374372	0.344102	3.446731

Sn	-2.733573	1.086678	-1.526305	
Sn	0.6783170	-2.474880	2.697718	
Sn	-2.176739	-1.802533	-2.046572	
Sn	-0.374372	0.344102	-3.446731	
Sn	1.145578	2.189516	1.511245	
Sn	2.592632	-0.265420	-2.193413	
Sn	2.402066	-2.410245	0.000000	
Y	-0.075179	-0.262999	0.000000	

$LaSn_{16}^{-}$ -I

Element	Х	Y	Z	
Sn	1.043687	3.185318	1.043687	
Sn	1.900874	-1.900874	1.900874	
Sn	-1.043687	-3.185318	1.043687	
Sn	1.043687	1.043687	3.185318	
Sn	3.185318	1.043687	1.043687	
Sn	1.043687	-1.043687	-3.185318	
Sn	-3.185318	1.043687	-1.043687	
Sn	-1.043687	3.185318	-1.043687	
Sn	1.043687	-3.185318	-1.043687	
Sn	-1.043687	1.043687	-3.185318	
Sn	-1.043687	-1.043687	3.185318	
Sn	3.185318	-1.043687	-1.043687	
Sn	-3.185318	-1.043687	1.043687	
Sn	-1.900874	1.900874	1.900874	
Sn	1.900874	1.900874	-1.900874	
Sn	-1.900874	-1.900874	-1.900874	
La	0.000000	0.000000	0.000000	

Element	Х	Y	Z
Sn	-1.516189	2.082220	2.403022
Sn	0.000000	2.171873	-2.529973
Sn	-1.516189	-2.082220	2.403022
Sn	0.000000	-2.171873	-2.529973
Sn	-2.428751	0.000000	-2.431578
Sn	-3.365960	0.000000	1.096702
Sn	1.516189	2.082220	2.403022
Sn	2.570006	-2.498669	-0.634425
La	0.000000	0.000000	0.132142
Sn	-2.570006	2.498669	-0.634425
Sn	-2.570006	-2.498669	-0.634425
Sn	1.516189	-2.082220	2.403022
Sn	2.570006	2.498669	-0.634425
Sn	0.000000	-3.943014	0.252333
Sn	0.000000	3.943014	0.252333
Sn	2.428751	0.000000	-2.431578
Sn	3.365960	0.000000	1.096702

 $LaSn_{16}^{-}\text{-}II$

 $LaSn_{16}^{-}$ -III

Element	Х	Y	Z
Sn	-2.169058	-1.864525	2.224307
Sn	2.709324	-0.232420	2.200419
Sn	-2.897817	1.016959	1.559078
Sn	0.763222	-2.465840	-2.792684

Sn	-0.655518	-3.598442	0.000000
Sn	-1.442671	3.248685	0.000000
Sn	1.259111	4.816045	0.000000
Sn	1.219769	2.270090	-1.539631
Sn	-0.379280	0.443550	3.529683
Sn	-2.897817	1.016959	-1.559078
Sn	0.763222	-2.465840	2.792684
Sn	-2.169058	-1.864525	-2.224307
Sn	-0.379280	0.443550	-3.529683
Sn	1.219769	2.270090	1.539631
Sn	2.709324	-0.232420	-2.200419
Sn	2.462459	-2.493461	0.000000
La	-0.101492	-0.270575	0.000000

Table S4. The root-mean-square deviation (RMSD) between experimental and simulated PES (X, A, B, C in eV) for Sn_{16}^{-} .

	X	А	В	С	RMSD
Exp. ^[S1]	2.98	3.64	3.84	4.32	/
Isomer A	3.00	3.72	3.82	4.24	0.058
Isomer B	2.88	3.48	3.76	4.28	0.104

As shown in Table S2 and Figure S1, the isomer A match the PES better than isomer B. DFT calculations indicate that isomer A has lower energy than B, which is consistent with the ref. [S2]. Isomer A is the most likely lowest energy isomer, both in terms of DFT calculations and PES and TIED [S2] experiment. In addition, the result is also consistent with ref. [S3]. Therefore, we consider isomer A as the lowest energy structure for pure Sn_{16}^{-} cluster in this article.

Figure S1 Comparing the Experimental and simulated PES of Sn_{16}^{-} . Comparison of two possible lowlying isomers with experimental PES. The structure and experimental PES are extracted from refs. [S1, S2]. The relative energy is carried out at the PBE0/Lanl08(d) level. The positions of the first four peaks in the experiment are marked with the letters X, A, B, and C.

Figure S2. Valence molecular orbitals diagram of $ScSn_{16}$.

Figure S3. AdNDP orbits of (a) YSn_{16}^{-} ; (b) $LaSn_{16}^{-}$.

Figure S4. ICSS curve plot along the Z-axis from the center of the (a) Sc; (b) Y; (c) La atom.

Supplemental References

- [1] L.F. Cui, L.M. Wang and L.S. Wang, J. Chem. Phys., 2007, 126, 64505.
- [2] A. Wiesel, N. Drebov, T. Rapps, R. Ahlrichs, U. Schwarz, R. Kelting, P. Weis, M. M. Kappes and D. Schooss, *Phys. Chem. Chem. Phys.*, 2012, 14, 234-245.
- [3] D. Wu, D.Y. Q, X. Wu, R.L. Shi, L.W. Sai, X.Q. Liang, X.M. Huang and J.J. Zhao, J. Chem. Phys., 2019, 150, 174304.