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Figure S1: Energy and temperature variation for Ti- and Fe- doped stanene at 300 K for 5 ps.

Adsorbate ZPE (eV) -TS (eV) G – Eelec (eV)
*CO2 0.330 -0.255 0.075

*COOH 0.619 -0.098 0.521
*CO 0.219 -0.131 0.088

*OCHO 0.592 -0.158 0.434
*HCOOH 0.940 -0.150 0.790
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Table S1: Contributions of zero-point energy and entropic corrections1,2 to adsorbate free 

energies

Electro-chemical stability:

Energy of formation of pure and TM-doped stanene are calculated as3 

∆𝐸 = 𝐸(𝑆𝑛𝑥𝑀𝑦) ‒ 𝑥𝐸𝑠𝑛 ‒ 𝑦𝐸𝑀

Here M denotes the TM SA, x and y are the numbers of Sn and TM atoms respectively.  for ∆𝐸

pure stanene is calculated to be -0.258 eV/Å2. For TM@Sn,  values are listed in Table S2.∆𝐸

The dissolution potential for TM@Sn is calculated as 4, 

𝑈𝐷𝑖𝑠𝑠 =  𝑈 0
𝐷𝑖𝑠𝑠 ‒

𝐸𝑇𝑀 ‒ 𝑆𝑛 ‒ 𝐸𝑆𝑛 ‒ 𝜇𝑚

𝑛𝑒

Where , n and e are standard dissolution potential of metal, number of electron involved in 𝑈 0
𝐷𝑖𝑠𝑠  

dissolution and electronic charge respectively and the corresponding values of  and n are 𝑈 0
𝐷𝑖𝑠𝑠

taken from existing literature4.  are the energies of stanene layer with and without 𝐸𝑇𝑀 ‒ 𝑆𝑛 𝑎𝑛𝑑 𝐸𝑆𝑛

TM atom,  is the chemical potential of the TM SA with gaseous energy reference representing 𝜇𝑚

implantation of TM SA as reported previously in similar hosts 5–11.

The dissolution potentials for TM@Sn (TM: Ti, Fe) are listed below in Table S2.

TM  (eV/Å2)∆𝐸
 (V)𝑈 0

𝐷𝑖𝑠𝑠 n (eV)𝜇𝑚 (V)𝑈 𝐺
𝐷𝑖𝑠𝑠

Ti -0.271 -1.63 2 -2.332 0.53

Fe -0.268 -0.45 2 -3.236 1.12

Table S2: Energy of formation/area and Dissolution potentials for TM@Sn.

With crystalline energy reference for the TM SAs, the energy of formation for Ti@Sn and Fe@Sn 

are 1.08 eV and 1.75 eV respectively. Both these values are significantly lower than the formation 

energies reported for similar 2D materials such as free-standing or graphene with single and double 

vacancies 12,13, within the same level of theory. The values however will change if improved DFT 

functional such as DFT+U 4 or hybrid functional 3 HSE06 is adopted. 



3

Hydrogen Bond Strength:

The possibility of H-bond formation between the activated CO2 and the nearby H2O molecules is 

realized through the interaction energies ( ) between these two molecules, calculated as per the 𝐸𝑖𝑛

super-molecular approach12, 

𝐸𝑖𝑛 = 𝐸𝐴𝐵 ‒ 𝐸𝐴 ‒ 𝐸𝐵

Where , , and are the energies of the optimized CO2, H2O molecules and of the complex 𝐸𝐴 𝐸𝐵 𝐸𝐴𝐵 

formed due to their co-adsorption respectively 14. Our calculated  values are -0.08 eV and -0.07 𝐸𝑖𝑛

eV for Ti and Fe-doped stanene respectively, indicating that formation of H-bond is favourable.

For Ti@Sn and Fe@Sn, the distances between (i) oxygen atoms of H2O and CO2 are 2.837 Å and 

2.905 Å, and (ii) oxygen atom of H2O and carbon atom of CO2 are 4.06 Å and 4 Å respectively, 

both shorter than 4.19 Å, the sum of Van der walls radii of Carbon (1.7 Å), Oxygen (1.52 Å) and 

O-H bond length in H2O (0.97 Å). 

The bader charges on the oxygen atom of H2O (charge accumulation) and carbon atom of CO2 

(charge depletion) for both the catalysts are listed below in Table S3.

Bader charge q (e)
Catalysts

𝑞𝐶𝑂2
𝐶 𝑞𝐻2𝑂

𝑂

Ti@Sn +1.15 -1.27

Fe@Sn +1.47 -1.37

Table S3: Bader charge analysis for C atom in CO2 and O atom in H2O.
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