Supplementary Material:

Nonvolatile switchable half metallicity and magnetism in MXenes Hf₂MnC₂O₂/Sc₂CO₂ multiferroelectric heterostructure

Changwei Wu,^{*a,b,c} Shanwei Sun, ^c Weiping Gong, ^{a,b} Jiangyu Li, ^{*d} Xiao Wang^{*c}

^aGuangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, P. R. China

^bSchool of Electronic Information and Electrical Engineering, Huizhou University, Huizhou

516001, Guangdong, P. R. China

^cShenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, Shenzhen 518055, P. R. China

^dGuangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China

Corresponding authors

Changwei Wu: cw.wu@hzu.edu.cn Jiangyu Li: lijy@sustech.edu.cn Xiao Wang: xiaowang@siat.ac.cn

Figure S1. (a) The atom structural diagrams of Sc_2CO_2 monolayer with different polarization orientations. (b) Band structure of Sc_2CO_2 monolayer. The gray, red and cyan balls represent C, O and Sc atoms, respectively. The green arrow represents the direction of polarization.

Figure S2. (a) The different stacking configurations of $Hf_2MnC_2O_2/Sc_2CO_2$ heterostructures. (a) DW-(I), (b) DW-(II), (c) DW-(III) are for $Hf_2MnC_2O_2/Sc_2CO_2\downarrow$. (d) UP-(I), (e) UP-(II), (f) UP-(III) are for $Hf_2MnC_2O_2/Sc_2CO_2\uparrow$. C, O, Sc, Mn and Hf are represented by gray, red, cyan, blue and purple balls, respectively.

Table S1. Calculated parameters of $Hf_2MnC_2O_2/Sc_2CO_2$ heterostructures. *d* is the interlayer distance. d_{0-0} is the minimum distance between O atom in $Hf_2MnC_2O_2$ and O atom in Sc_2CO_2 . d_{0-Sc} is the minimum distance between O atom in $Hf_2MnC_2O_2$ and Sc atom in Sc_2CO_2 . E_{tot} is the total energy.

Stacking Configurations	DW-(I)	DW-(II)	DW-(III)	UP-(I)	UP-(II)	UP-(III)
<i>d</i> (Å)	2.168	2.763	3.121	2.156	2.523	3.011
$d_{ ext{O-O}}\left(\text{\AA}\right)$	2.839	3.271	3.121	2.825	3.139	3.011
$d_{ ext{O-Sc}}(ext{\AA})$	2.815	3.932	4.294	2.775	3.698	4.072
$E_{tot} (\mathrm{eV})$	-104.200	-104.079	-104.028	-104.227	-104.151	-104.060

Figure S3. Electronic band structures of (a, b, e, f) $Hf_2MnC_2O_2/Sc_2CO_2 P\downarrow$, (c, d, g, h) $Hf_2MnC_2O_2/Sc_2CO_2 P\uparrow$ with DFT-D2 and optPBE-vdW methods, respectively. Green and red lines represent the contributions from spin-up and spin-down channels of $Hf_2MnC_2O_2$, black lines denote the contributions from Sc_2CO_2 monolayer.

Figure S4. The differential charge density of four structural states (a) P_1 , (2) P_2 , (c) P_3 , and (d) P_4 . The green and purple colors represent charge depletion and accumulation, respectively.

Table S2. The magnetic anisotropic energy $(MAE=E_{100}-E_{001})$ of Hf₂MnC₂O₂/Sc₂CO₂ heterostructure with different van der Waals corrections.

		$MAE = E_{100} - E_{001}$
	DFT-D3	-93 µeV
$Hf_2MnC_2O_2/Sc_2CO_2\downarrow$	DFT-D2	-97 μeV
	optPBE-vdw	-89 µeV
	DFT-D3	47 μeV
$Hf_2MnC_2O_2/Sc_2CO_2\uparrow$	DFT-D2	64 µeV
	optPBE-vdw	30 µeV

Figure S5. The d-orbital decomposed PDOS of (a) $Hf_2MnC_2O_2$, (b) $Hf_2MnC_2O_2/Sc_2CO_2-P\downarrow$, (c) $Hf_2MnC_2O_2/Sc_2CO_2-P\uparrow$. The Mn and Hf are represented by black and red colors, respectively.

Figure S6. The MAE of $Hf_2MnC_2O_2/Sc_2CO_2-P\downarrow$ (red dot line) and $Hf_2MnC_2O_2/Sc_2CO_2-P\uparrow$ (blue dot line) as function of the d_{O-Sc} . The red and blue dash vertical lines indicate equilibrium positions of $Hf_2MnC_2O_2/Sc_2CO_2-P\downarrow$ and $Hf_2MnC_2O_2/Sc_2CO_2-P\uparrow$, respectively.