Supplemental Material

Intrinsic Defect Physics in B-Site Columnar-Ordered Halide Double Perovskites

$Cs_2AgPdBr_5$

Wenjun Chu,^a Xinbo Ma^a and Zhenyu Li^{*,b}

^aHefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China

^bKey Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China

email: zyli@ustc.edu.cn

Table S1. Comparison of the cubic equilibrium lattice parameters (*a*) and band gaps (E_g) between calculated and experimental results¹ for Cs₂AgPdX₅ (X = Cl, Br) and Cs₂AgPtCl₅.

Systems -	$a(\text{\AA})$		E g(eV)		
	Cal.	Exp.	Cal. (without SOC)	Cal. (with SOC)	Exp.
$Cs_2AgPdCl_5$	7.49	7.38	1.46	1.47	1.55
Cs ₂ AgPdBr ₅	7.87	7.75	1.33	1.34	1.33
Cs ₂ AgPtCl ₅	7.52	7.41	1.83	1.63	1.77

Table S2. $\Delta \mu_i$ values for different chemical growth environments as marked in the phase diagram, for Cs₂AgPdBr₅.

Chemical environment	$\Delta \mu_{Ag} (eV)$	$\Delta \mu_{\rm Cs} ({\rm eV})$	$\Delta \mu_{\rm Pd} (eV)$	$\Delta \mu_{\rm Br} ({\rm eV})$
А	-0.3	-3.13	-0.08	-0.836
В	-0.6	-3.38	-0.60	-0.572
С	-0.9	-3.57	-1.06	-0.344

Table S3. Calculated the carrier effective masses and the effective density of states for Cs_2AgPdX_5 (X = Cl, Br).

	$m_{e}^{*}(m_{0})$	$m_{\rm h}^{*}(m_{\rm 0})$	$N_{c} ({\rm cm}^{-3})$	$N_{v} ({\rm cm}^{-3})$
Cs ₂ AgPdCl ₅	0.52	0.98	9.4×10 ¹⁸	2.9×10 ¹⁹
Cs ₂ AgPdBr ₅	0.33	0.55	4.9×10 ¹⁸	1.1×10^{19}

Table S4. Pinned fermi level E_F (eV), the hole densities p_0 (cm⁻³), and electron densities n_0 (cm⁻³) at the room temperature at three representative chemical potential points A–C in figure 2 for Cs₂AgPdBr₅.

chemical potential points	pinned $E_{\rm F}$	p_0	n_0
А	0.66	9.4×10 ⁷	2.9×10^{7}
В	0.39	3.2×10^{12}	8.6×10^{2}
С	0.08	5.0×10^{17}	5.4×10 ⁻³

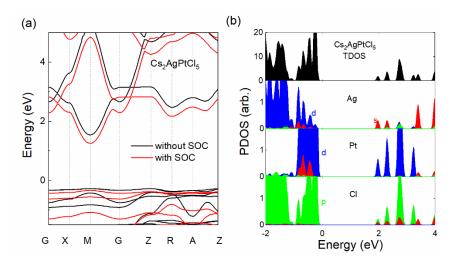
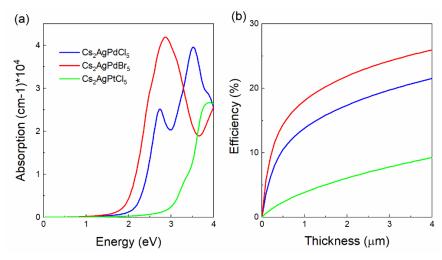
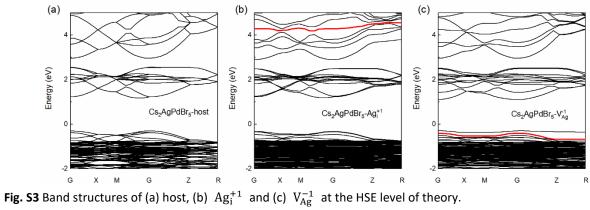




Fig. S1 (a) Band structure and (b) partial density of state of Cs₂AgPtCl₅ at the HSE level of theory.

Fig. S2 (a) Optical absorption coefficient vs incident photon energy and (b) limit of efficiency vs film thickness at 298 K for Cs_2AgPdX_5 (X = Cl, Br) and $Cs_2AgPtCl_5$ calculated at the HSE level of theory.

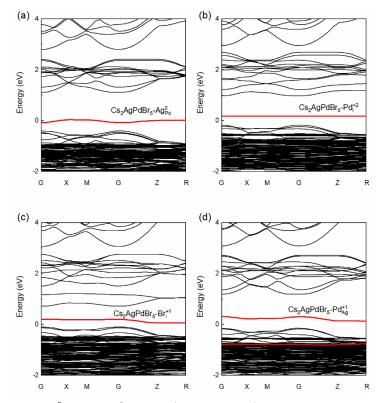
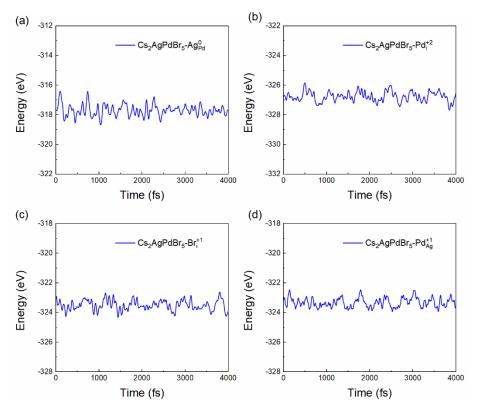



Fig. S4 Band structures of (a) Ag_{Pd}^{0} , (b) Pd_{i}^{+2} , (c) Br_{i}^{+1} , and (d) Pd_{Ag}^{+1} at the HSE level of theory, respectively.

Fig. S5 The Fluctuation of total potential energy at Gamma point for Cs₂AgPdBr₅ during the AIMD simulation at 300 K.

References

1 G. Ji, C. Han, S. Hu, P. Fu, X. Chen, J. Guo, J. Tang and Z. Xiao, J. Am. Chem. Soc., 2021, 143, 10275-10281.