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Here, we intend to calculate the spatial distribution of electric field for an TMD coated gold nanoshell in the presence of an incident
electric field with x-polarized plane wave as Ei = E0exp[ikr cosθ ]x̂ with a time dependence of exp(−iωt). This nanopartice has three
layers so that each of them is characterized by a size parameter as xl = 2πnmrl/λ = krl and a relative refractive index as ml = Nl/Nm, l =
1,2,3, where λ is the wavelength of the incident light in vaccum, rl is the outer radius of the lth layer, Nm and Nl are the refractive
indices of the medium (i.e., Nm =

√
εm) and its lth layer, respectively. The electric field in lth layer is expressed as the superposition of

the complex vector harmonic functions including M( j)
oln and N( j)

eln ( j = 1,3) as1
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∞

∑
n=1

En

[
c(l)n M(1)

oln− id(l)
n N(1)

eln + ia(l)n N(3)
eln−b(l)n M(3)

oln

]
, (1)

where superscripts j = 1 and j = 3 denote the first kind of spherical Bessel and Henkel functions, respectively. These vector spherical
harmonics in terms of the Ricaati-Bessel functions are written as2
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êθ − sinφτn(cosθ)

r( j)
n (ρ)

ρ
êφ
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where ρ = kmlr, En = inE0(2n+1)/(n(n+1)) and r( j)
n (ρ) for j = 1 and j = 3 indicates the Riccati-Bessel functions ψn and ζn, respectively.

These functions are related to the spherical Bessel and Hankel functions as

jn(ρ) =
ψn(ρ)

ρ
, h(1)n =

ζn(ρ)

ρ
(3)

and their logarithmic derivatives are defined as D(1)
n = ψ ′n/ψn and D(3)

n = ζ ′n/ζn. The angular distribution functions πn and τn can be
calculated from the following recurrence relations3 :

π0(cosθ) = 0, π1(cosθ) = 1,

πn(cosθ) =
2n−1
n−1

cos(θ)πn−1(θ)−
n

n−1
πn−2(θ) (n≥ 2),

τn(cosθ) = ncosθπn(cosθ)− (n+1)πn−1(cosθ) (n≥ 1). (4)

Here, the expansion coefficients (a(l)n , b(l)n , c(l)n and d(l)
n ) are calculated via using the procedure of Bohren and Huffman’s4. For this

purpose, the boundary conditions at all the interfaces due to maching the tangential components of electric field at each layer and
the orthogonality condition for vector harmonics yield four independent linear equations for a given n5. Solving these equations, the
expansion coefficients obtain as

a(l)n =
D(1)

n (mlxl)Γ1(ml+1,xl)+Γ3(ml+1,xl)
ml

ml+1

ζn(mlxl)D(mlxl)

b(l)n =
D(1)

n (mlxl)Γ2(ml+1,xl)
ml

ml+1
+Γ4(ml+1,xl)

ζn(mlxl)D(mlxl)

(5)
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n (mlxl)Γ2(ml+1,xl)
ml
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(6)

where

D(z) = D(1)
n (z)−D(3)

n (z)
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(7)

Since the electric field is finite at the origin, there are no outward waves in the first layer and it leads to an additional condition as
a(1)n = b(1)n = 0. Moreover, the inward waves outside the particle must be equal to the incident electric field, so c(4)n = d(4)

n = 1, a(4)n = an

and b(4)n = bn, where an and bn are the scattering coefficients. In order to obtain the coefficiencts an and bn, one can apply a recursion
algorithm with considering new coefficients An and Bn

5. In this way:
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and
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n = 0, Ha
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nD(3)
n (mlxl)

Rn(mlxl)−B(l)
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n (ml+1x1)

mlHb
n (mlxl)−ml+1D(3)

n (ml+1x1)
(9)

where Rn(z) = ψn(z)/ζn(z). In this case, the calculation starts from l = 1 for A(l)
n and B(l)

n , which results A(1)
n = B(1)

n = 0 according to the
initial conditions inside the core. In the continuation of this method, from the known values of A(1)

n and B(1)
n , the values A(2)

n and B(2)
n are

calculated so that the final coefficients in these series determines the scattering coefficients an and bn as an = A(4)
n and bn = B(4)

n . After
calculating the scattering coefficients, we can obtain the expansion coefficients and eventually using 1 will be determined the electric
field spatial distribution in the all layers.
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